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Abstract

Mutual fund performance is traditionally evaluated using alpha, which measures the

utility gain of an unconstrained investor who has access to the fund in addition to the

benchmark factors. We prove that the utility gain of shortsale-constrained investors is

instead measured by achievable alpha, estimated using only those factors with strictly

positive weight in the shortsale-constrained benchmark-factor portfolio. Empirically,

active-fund management is less valuable for constrained investors: while 62.54% of

funds have positive traditional gross alpha, only 37.27% have positive achievable gross

alpha for a benchmark containing eight Vanguard funds. Finally, achievable alphas

significantly predict fund flows, particularly during market turmoil.
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1 Introduction

The US mutual-fund industry manages more than 28 trillion dollars as of 2024. Of this

amount, about 88 percent is held by retail investors (71 million US households, representing

over 120 million individuals), with institutions, such as pension funds, insurance companies,

and endowments, holding 12 percent (ICI Fact Book, 2025, p. 45). The average active

mutual fund, however, underperforms its benchmark after fees,1 and investment in active

mutual funds has declined from 94% of assets under management in 1996 to only 41% in 2024

(American Century Investments, 2024, fig. 1). This highlights the importance of evaluating

the performance of active mutual funds carefully.

Traditionally, mutual-fund performance is evaluated by the alpha obtained from re-

gressing fund returns on benchmark-factor returns. The economic motivation for this metric

stems from Gibbons, Ross, and Shanken (1989), who show that a quadratic form of the

alpha measures the mean-variance utility improvement an investor can achieve when she has

access to the fund, in addition to the benchmark factors. However, if the benchmark port-

folio includes short positions in some factors, then for shortsale-constrained investors, this

alpha is unachievable, and so is not an accurate measure of performance. In practice, many

mutual-fund investors face shortsale impediments. For instance, most retail investors—who

own 88 percent of mutual funds—do not take short positions due to share-borrowing costs,

margin costs, or an aversion to the risk associated with short positions.2 And, even institu-

tional investors may face shortsale constraints. For example, the mandate of some pension

funds precludes them from taking significant short positions directly or indirectly.3 Even

pension funds whose mandate allows them to short tend to hold only small short positions.4

1The Morningstar report by Armour, Jackson, Gorbatikov, and Kim (2024) shows that less than 22% of
active strategies beat their passive counterparts over the ten years through 2024.

2For instance, Kelley and Tetlock (2017, p. 805) analyze a dataset with 144 billion dollars of retail trades
and find that only 5.54% of the retail dollar volume corresponds to shortsales. Moreover, Gamble and Xu
(2017) show that only around 1.2% of the retail trades in their dataset are short sales.

3For instance, the state of Georgia precludes its public pension funds from investing more than 5% of
their assets in alternative investments such as hedge funds (Molk and Partnoy, 2019, p. 851).

4For example, (Molk and Partnoy, 2019, p. 853) explain that in a sample of private pension funds drawn
from Fortune 1000 companies, “only 6–8% of assets were invested in hedge funds and other assets that could
conceivably involve short selling activity.” Even hedge funds can face challenges when they short, including
“legal and at times physical threats,” as described by Aliaj, Agnew, and Wiggins (2024).
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In this paper, we propose a straightforward approach for evaluating mutual-fund

performance for a shortsale-constrained investor. Theoretically, we demonstrate that the

marginal utility improvement that a shortsale-constrained investor can achieve when she has

access to a mutual fund can be measured by the achievable alpha, which is the fund alpha

with respect to only those benchmark factors that have a strictly positive weight in the

shortsale-constrained mean-variance portfolio. Intuitively, one would expect the achievable

alpha to be larger than its traditional counterpart because excluding some factors from the

benchmark portfolio should worsen its performance. However, we show theoretically that

the achievable alpha can be smaller than the traditional alpha. To understand the intuition

underlying this result, consider, for instance, the extreme example of a mutual fund that

achieved a negative annual return of −2% over the evaluation period, but is evaluated with

respect to a single benchmark factor that achieved a return of −3%. Then, the mutual-fund

alpha is positive (+1%) assuming a unit beta. But to benefit from this positive alpha, an

investor must be able to short the benchmark factor. For an investor who cannot short the

benchmark, the achievable alpha is only the fund’s mean return, −2%.

For our empirical analysis, we consider six prominent benchmark factor models: the

CAPM model of Sharpe (1964) and Lintner (1965), the four-factor model obtained by adding

momentum to the three factors of Fama and French (1993) as in Carhart (1997), FFC, the

five-factor model of Fama and French (2015), FF5, the six-factor model of Fama and French

(2018), FF6, the four-factor model of Hou, Xue, and Zhang (2015), HXZ, and the five-

factor model obtained by adding momentum to the four factors of Hou et al. (2015), HXZM.

In addition, we consider a factor model containing the returns of eight US domestic equity

Vanguard funds, VANG. Our motivation for considering this model arises from Berk and van

Binsbergen (2015), who point out that the factors in prominent factor models do not account

for transaction costs and, thus, do not represent the best alternative investment opportunity

for mutual-fund investors. Consequently, they propose considering as a benchmark a set of

11 Vanguard funds that invest in domestic and foreign equities and are easily accessible to

investors. Of these funds, we consider a factor model containing the returns of the eight

funds that invest in only domestic equity.

We extend the argument of Berk and van Binsbergen (2015) and point out that five

of the aforementioned models (FFC, FF5, FF6, HXZ, and HXZM) contain factors that are
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the returns of long-short portfolios, and thus, they are not easily accessible to shortsale-

constrained investors. For instance, An, Huang, Lou, and Shi (2023, table 1) show that

long-short mutual funds represent only a very small fraction (below 3%) of the assets under

management in the mutual-fund industry. Moreover, they show that most mutual funds with

short positions use a degree of leverage that is much smaller than that employed by the long-

short factors in prominent asset-pricing models.5 The limited shortselling of mutual funds

could be explained by the recent findings of Johansson, Sabbatucci, and Tamoni (2025), who

show that even without accounting for shorting fees, the short leg of factors such as the

investment and profitability factors of Fama and French (2015) are difficult to implement

in practice.6 To address this concern, we consider the five aforementioned models using

long-only versions of the factors in the original models.

Our main empirical finding is that mutual-fund performance measured in terms of the

achievable alpha of a shortsale-constrained investor with respect to the long-only versions

of the factor models is substantially worse than that measured in terms of traditional alpha

with respect to long-short factor models. For instance, the top plot in Figure 1 shows

that while the proportion of mutual funds with positive traditional gross-of-fees alpha with

respect to the long-short factor models ranges from 51.21% for HXZ to 62.54% for VANG, the

proportion of mutual funds with positive achievable gross-of-fees alpha with respect to the

long-only models is only 11.81% for HXZ and 37.27% for VANG. These striking results are

robust to measuring mutual-fund performance in terms of the value-added measure of Berk

and van Binsbergen (2015).7 For instance, the bottom plot in Figure 1 shows that while

the proportion of mutual funds with positive traditional value-added with respect to the

long-short factor models ranges from 35.12% for HXZ to 44.58% for VANG, the proportion

5The long-short factors in factor models typically have the same aggregate position in their long and
short legs. In contrast, An et al. (2023, p. 2) show that only 8% of the mutual funds in their sample hold
any short positions, and only 3% of the funds hold short positions that aggregate to more than 20% of their
assets under management.

6Johansson et al. (2025) point out that the short leg of these factors includes stocks that “(i) display
extreme exposure to the underlying factor characteristic and (ii) are not traded in practice, as revealed by
fund holdings.” They also mention there is a scarcity of funds investing in “losers,” “weak profitability,” and
“aggressive” stocks required to replicate the academic factors.

7Berk and van Binsbergen (2015) explain the importance of measuring mutual-fund performance in terms
of value-added, defined as the average of the product between a fund’s gross abnormal returns and its assets
under management. Following their approach, we define achievable value-added as the average of the product
between achievable abnormal return and assets under management.
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Figure 1: Traditional and achievable gross alpha and value-added

This figure depicts the proportion of funds with positive traditional and achievable gross alpha (top plot)
and value-added (bottom plot) with respect to the seven factor models we consider. Traditional alphas are
computed by regressing the fund returns on all long-short factors for each model, and achievable alphas
on just those long-only factors with a strictly positive weight in the shortsale-constrained mean-variance
portfolio (over the sample period for which we have return data for the fund). Traditional value-added is
the average of the product of assets under management and abnormal returns, obtained by regressing fund
returns on all long-short factors in each model, and achievable value-added is computed using fund abnormal
returns with respect to just those long-only factors with a strictly positive weight in the shortsale-constrained
mean-variance portfolio.

Percentage of funds with positive alpha

CAPM FFC FF5 FF6 HXZ HXZM VANG
0

10

20

30

40

50

60

70

Traditional alpha Achievable alpha

Percentage of funds with positive value-added

CAPM FFC FF5 FF6 HXZ HXZM VANG
0

10

20

30

40

50

60

70

Traditional value-added Achievable value-added

of mutual funds with positive achievable value-added with respect to the long-only models

is 8.90% for HXZ and 18.38% for VANG.

The finding that mutual-fund performance deteriorates when evaluated using achiev-

able alpha is counterintuitive. Both dropping some factors and using long-only versions of

the remaining factors should worsen the performance of the benchmark portfolio, and thus,
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one would expect the alpha of a mutual fund to be larger with respect to the restricted bench-

mark. However, we show theoretically that if a fund has positive beta with respect to some

of the factors with zero weight in the shortsale-constrained portfolio, then the achievable

alpha can be smaller than the traditional alpha. The intuition is that benchmark factors

with zero-weight in the shortsale-constrained portfolio underperform relative to the other

factors. If a mutual fund has a positive beta with respect to such underperforming factors,

then an investor would optimally wish to short the underperforming factors to hedge the

risk of the mutual fund, which would allow her to take a larger position on the mutual fund.

Empirically, we find that the long-only benchmark factors often have a zero weight in the

mean-variance portfolio, and mutual funds often have a positive beta with respect to the

zero-weight long-only factors. This implies that an unconstrained investor often wishes to

short some of the benchmark factors against a positive position in the mutual fund. Thus,

achievable alpha is often smaller than traditional alpha because the shortsale constraints

limit the position that investors can take in the mutual fund.

To illustrate the intuition underlying our results, we consider in Section 3.3 a simple

example of a benchmark with only two factors: the market (MKT) and the long-only ver-

sion of momentum (UMD). The unconstrained mean-variance portfolio of these two factors

assigns a weight of −0.80 to MKT and 1.40 to UMD, but the shortsale-constrained mean-

variance portfolio assigns a weight of zero to MKT and 0.79 to UMD. As a result, we find

that the achievable alpha of Columbia Acorn Fund (1.21%) is substantially smaller than

the traditional alpha (1.79%). To understand why the achievable alpha is smaller than the

traditional alpha, we compare the unconstrained and shortsale-constrained mean-variance

portfolio weights of the two benchmark factors and the mutual fund. We find that an uncon-

strained investor would hold −1.15 in MKT, 0.91 in UMD, and 0.89 in the mutual fund. That

is, the unconstrained investor would short the MKT to hedge the risk of the UMD factor and

the mutual fund. In contrast, a shortsale-constrained investor would hold zero in MKT, 0.33

in UMD, and only 0.53 in the mutual fund. Consequently, the shortsale-constrained investor

is forced to reduce her exposure to the UMD factor and Columbia Acorn Fund because she

cannot use the MKT factor to hedge the overall risk of her portfolio.

To understand whether the difference between the traditional and achievable alphas

is related to macroeconomic conditions, we compare the time series of the cross-sectional
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average traditional and achievable alphas computed on a 36-month rolling window. We

find that the difference between the average traditional and achievable alphas widens during

periods of financial turmoil such as the the two back-to-back recessions in 1980 and 1981–

82, the dot-com bubble of the early 2000’s, and the great financial crisis of 2009. Thus,

shortsale-constrained investors should use achievable alpha to evaluate mutual-fund perfor-

mance particularly during periods of financial crises.

To study whether investors indeed rely on the achievable alpha to evaluate mutual-

fund performance, we examine whether the traditional and achievable alphas explain future

fund flows. We find that the traditional and achievable alphas are jointly significant in

explaining future fund flows, suggesting that at least some mutual-fund investors rely on the

achievable alpha to evaluate fund performance and make investment decisions. Moreover, we

find that the predictive power of achievable alpha increases during periods of high market

volatility, relative to that of the traditional alpha. This suggests that investors rely on

the achievable alpha to evaluate fund performance, particularly during periods of market

turmoil.

For robustness, we also evaluate the performance of mutual funds for investors that

can engage in a limited amount of shortselling. First, we consider an investor who can

short only the market factor using, for instance, an inverse market ETF. We find that the

availability of inverse ETFs that allow investors to efficiently short the market may help to

improve the value of active funds for shortsale-constrained investors; however, even in this

case, the average achievable alpha is still substantially smaller than the average traditional

alpha of an unconstrained investor. Second, we consider the case of an investor who can short

the benchmark factors, but faces a leverage constraint. We find that the average achievable

alpha of a leverage-constrained investor remains substantially smaller than the traditional

alpha of an unconstrained investor even when we allow the investor to hold aggregate short

positions up to 40% of her aggregate long positions.

An important implication of our work is that the value of active fund management for

shortsale-constrained investors is significantly smaller than previously thought. This implies

that investment platforms with retail investor clients should report mutual-fund performance

not only in terms of the traditional alpha but also in terms of achievable alpha that accounts

for the shortsale impediments faced by the majority of retail investors. Similarly, investment
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firms that manage the assets of pension funds that (by mandate or strategy) abstain from

shorting assets should report mutual-fund performance in terms of achievable alpha or value-

added to account for their client’s constraints. Finally, our work highlights the importance

of the choice of benchmark for evaluating mutual-fund performance, in line with the findings

of Mullally and Rossi (2024) and Chen, Evans, and Sun (2025).

There is an extensive literature that evaluates mutual-fund performance using the

traditional alpha. This research typically shows that the average active fund earns a negative

alpha net of fees (Jensen, 1968; Elton, Gruber, and Blake, 1996; Ferreira, Keswani, Miguel,

and Ramos, 2013). However, several studies document the existence of a subset of managers

that outperform their benchmarks (Wermers, 2000; Barras, Scaillet, and Wermers, 2010;

Fama and French, 2010; Kacperczyk, Nieuwerburgh, and Veldkamp, 2014). Assuming there

are diseconomies of scale in fund management, Berk and Green (2004) explain that fund net

alpha should be zero in equilibrium because investors allocate capital to funds with positive

net alpha until diseconomies of scale drive their net alpha to zero. Thus, manager skill

should be measured in terms of gross (instead of net) alpha. More recently, Berk and van

Binsbergen (2015) propose using the value a mutual fund extracts from capital markets as

the appropriate measure of skill, and find that the average value-added of a mutual fund is

about $3.2 million per year. They also show that more than 40% of the funds generate a

positive value-added. Barras, Gagliardini, and Scaillet (2022) develop a flexible and bias-

adjusted approach to examine value-added across individual funds and find that the majority

of funds generate a positive value-added. We contribute to this literature by demonstrating

that the performance of a mutual fund for shortsale constrained investors is measured by

the achievable alpha, and showing that the proportion of funds with positive gross alpha or

value-added is much smaller from the perspective of a shortsale-constrained investor.

Our work is also related to the literature that studies the effect of market frictions on

the benefits to investors from holding different asset classes. For instance, De Roon, Nijman,

and Werker (2001) show that in the presence of transaction costs and shortsale constraints,

U.S. investors no longer benefit from investing in emerging markets. Brown, Gonçalves,

and Hu (2024) show that illiquidity and underdiversification in private markets reduce the

benefits to investors from holding private-capital assets, such as buyout, venture capital,
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and real estate. We contribute to this literature by examining whether shortsale-constrained

investors benefit from holding actively managed mutual funds.

Finally, our work is related to the literature on market frictions in asset pricing (Novy-

Marx and Velikov, 2016; Barroso and Detzel, 2021; DeMiguel, Martin-Utrera, Nogales, and

Uppal, 2020; Chen and Velikov, 2023; Detzel, Novy-Marx, and Velikov, 2023; Li, DeMiguel,

and Martin-Utrera, 2024; DeMiguel, Martin-Utrera, and Uppal, 2024; Muravyev, Pearson,

and Pollet, 2025). While this literature focuses on the impact of market frictions on the

performance of asset-pricing models, we focus on the impact of market frictions on the

performance of mutual funds.

The rest of the paper is organized as follows. In Section 2, we show theoretically how

to measure mutual-fund alpha in the presence of shortsale constraints. In Section 3, we first

describe our data and methodology for constructing multifactor benchmark portfolios and

then discuss our empirical results. Section 5 evaluates the performance of mutual funds for

investors that can engage in a limited amount of shortselling. Section 6 concludes. Proofs

of all our theoretical results are provided in the appendix.

2 Achievable Alpha: Theoretical Results

In this section, we provide our theoretical results that show that one can interpret the tradi-

tional and achievable mutual fund alphas as the marginal mean-variance utility improvement

in the absence and presence of shortsale constraints of an investor who has access to the fund

in addition to the benchmark factors. We also characterize the difference between the tradi-

tional and achievable alphas and the conditions under which achievable alpha will be smaller

than the traditional alpha. Table 1 summarizes our notation.

Mutual-fund performance is traditionally measured using the fund’s alpha (Jensen,

1968), defined as the intercept from regressing the fund’s returns on the returns of the

benchmark factors. The use of the traditional alpha as a fund performance measure is

economically justified by the work of Gibbons et al. (1989), who show that a quadratic form

of the alpha equals the increase in the squared Sharpe ratio of a mean-variance investor that

has access to the fund in addition to the benchmark factors.
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Table 1: Guide to notation

This table describes the notation we use in the paper to describe the excess returns of a mutual fund and
benchmark factors, the traditional and achievable alpha, and the slope coefficients (betas) obtained from
various regressions of excess returns. The first column of the table gives the symbol we use, and the second
column its definition.

Notation Definition

Rmf ,t mutual-fund return in excess of the risk-free rate
Rb,t excess return of benchmark factors
Rb+,t excess return of benchmark factors with positive weight in the shortsale-

constrained mean-variance portfolio
Rb0,t excess return of benchmark factors with zero weight in the shortsale-

constrained mean-variance portfolio

αT traditional alpha, intercept from regressing Rmf ,t on Rb,t

αA achievable alpha, intercept from regressing Rmf ,t on Rb+,t

α0+ intercept from regressing Rb0,t on Rb+,t

βT slope from regressing Rmf ,t on Rb,t

βA slope from regressing Rmf ,t on Rb+,t

βT ,+ slope coefficient on Rb+,t when regressing Rmf ,t on Rb+,t and Rb0,t

βT ,0 slope coefficient on Rb0,t when regressing Rmf ,t on Rb+,t and Rb0,t

Berk and Green (2004) show that if markets are competitive and there are disec-

onomies of scale in mutual-fund management, in equilibrium, a fund’s gross alpha should be

equal to its management fee, and thus, investors should be indifferent between investing in

the fund or not. In this context, it is useful to relate a fund’s alpha to the marginal (per

dollar) utility improvement that it can generate for an investor with access to the benchmark

factors. This interpretation is highlighted in the following well-known result.

Proposition 1 A fund’s traditional alpha, αT , defined as the intercept from regressing the

mutual-fund return in excess of the risk-free rate Rmf ,t on the benchmark factor returns Rb,t,

Rmf ,t = αT + βTRb,t + ϵb,t, (1)

is the marginal mean-variance utility improvement of an unconstrained investor who has

access to the fund in addition to the benchmark factors.

The marginal utility improvement measured by the traditional alpha, as shown in

Proposition 1, can only be realized if the investor can invest in the optimal mean-variance

portfolio of the benchmark factors. However, this portfolio may require taking a short

position in some of the benchmark factors and many investors face shortsale impediments in

practice. The following proposition shows that the achievable alpha, defined as the intercept
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from regressing the fund returns on the returns of those benchmark factors with a strictly

positive weight in the shortsale-constrained mean-variance portfolio, measures the marginal

utility improvement that a fund generates for a shortsale-constrained investor.

Proposition 2 Let the weights of the shortsale-constrained mean-variance portfolio of the

benchmark factors be w∗
b = (w∗

b+
, w∗

b0
), where w∗

b+
> 0 and w∗

b0
= 0. Then, a fund’s achievable

alpha, αA, defined as the fund’s alpha with respect to the returns of the benchmark factors

with positive weight in the shortsale-constrained mean-variance portfolio, Rb+,t,

Rmf ,t = αA + βARb+,t + ϵb+,t, (2)

is the marginal mean-variance utility improvement that a shortsale-constrained investor can

achieve by investing in the fund in addition to the benchmark factors.

The theoretical result in Proposition 2 is closely related to that of De Roon et al.

(2001), who propose regression-based results for mean-variance spanning in the case where

investors face shortsale constraints and transaction costs. However, in the following propo-

sition we go beyond the analysis in De Roon et al. (2001) to establish also the conditions

under which the achievable alpha is smaller than the traditional alpha.

Proposition 3 Let Rb+,t ∈ RK+ denote the return of the benchmark factors with strictly

positive weight and Rb0,t ∈ RK0 the return of the benchmark factors with zero weight in the

shortsale-constrained mean-variance portfolio. Regressing the mutual fund excess returns,

Rmf ,t, on the benchmark factor returns, we have that:

Rmf ,t = αT + βT ,+Rb+,t + βT ,0Rb0,t + ϵb,t, (3)

where αT is the traditional alpha, and regressing the zero-weight factor returns, Rb0,t, on the

positive-weight factor returns, Rb+,t, we have that:

Rb0,t = α0,+ + β0,+Rb+,t + ϵ0,+,t. (4)

Then, the difference between the traditional and achievable alphas is

αT − αA = −βT ,0 α0,+. (5)

Moreover, α0,+ < 0, and thus, the achievable alpha is smaller than the traditional alpha if the

fund has strictly positive exposure to at least one zero-weight factor and nonnegative exposure

to the rest.
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Intuitively, one would expect that the achievable alpha is larger than the traditional

alpha because the achievable alpha is the abnormal return with respect to a subset of the

factors used to compute the traditional alpha. However, the above proposition shows that

if the fund has a positive exposure to the factors for which the shortsale-constrained mean-

variance portfolio assigns a zero weight, then the achievable alpha will actually be smaller

than the traditional alpha. This is because shorting the zero-weight factors allows the in-

vestor to hedge the risk of the mutual-fund returns. In the next section, first, in Section 3.3,

we provide a numerical example to illustrate this intuition and then show empirically that

the achievable alpha is, on average, smaller than the traditional alpha because, on average,

mutual funds have positive exposure to the zero-weight benchmark factors.

3 Achievable Alpha: Empirical Performance

In this section, we present our empirical results. In Section 3.1, we describe the data we use

for our analysis. In Section 3.2, we analyze the characteristics of the mean-variance portfolios

for the different benchmark factor models. In Section 3.4, we examine the performance of

mutual funds in terms of achievable and traditional alpha and value-added.

3.1 Data

Table 2 lists the seven models we consider as benchmarks: the CAPM model of Sharpe

(1964), the four-factor model obtained by adding momentum to the three factors of Fama

and French (1993) as in Carhart (1997), FFC, the five-factor model of Fama and French

(2015), FF5, the six-factor model of Fama and French (2018), FF6, the four-factor model of

Hou et al. (2015), HXZ, a five-factor model with the Hou et al. (2015) factors plus momentum,

HXZM, and an eight-factor model based on the eight US domestic equity Vanguard funds

in Berk and van Binsbergen (2015), VANG.8 For models that contain long-short factors,

we consider two versions, one with original long-short factors and the other with long-only

factors, constructed using only the long leg of the original factors.

8Of the 11 Vanguard funds Berk and van Binsbergen (2015) consider for their benchmark model, we
consider a factor model that contains the returns of the eight funds that invest only in domestic equity. In
particular, we consider the following Vanguard funds: VFINX (large-cap blend), VEXMX (mid-cap blend),
NAESX (small-cap blend), VVIAX (large-cap value), VBINX (balanced), VIMSX (mid-cap blend), VISGX
(small-cap growth), VISVX (small-cap value).
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Table 2: List of factor models considered

This table lists the factor models we consider. The first column gives the acronym of the model, the second
column the number of factors in the model (K), the third column the authors who proposed the model, and
the fourth column the date and journal of publication. The last column lists the acronyms of the factors
included in the model.

Acronym K Authors Date, Journal Factor acronyms

CAPM 1 Sharpe 1964, JF MKT
FFC 4 Carhart 1997, JF MKT, SMB, HML, UMD
FF5 5 Fama and French 2015, JFE MKT, SMB, HML, RMW, CMA
FF6 6 Fama and French 2018, JFE MKT, SMB, HML, RMW, CMA, UMD
HXZ 4 Hou, Xue, and Zhang 2015, RFS MKT, ROE, IA, ME
HXZM 5 Hou, Xue, and Zhang 2015, RFS MKT, ROE, IA, ME, UMD
VANG 8 Berk and van Binsbergen 2015, JFE VFINX, VEXMX, NAESX, VVIAX,

VBINX, VIMSX, VISGX, VISVX

For the mutual fund data, we start with the dataset in Barras et al. (2022) that

consists of 2,321 active mutual funds spanning January 1975 through December 2019.9 Their

data consist of monthly net-of-fees returns, expense ratios, and total net assets for open-end

actively managed U.S. equity funds from CRSP, which they then use to compute gross-of-fees

returns in excess of the one-month treasury bill (risk-free) rate.10 Just as in Barras et al.

(2022), we compute value-added in terms of January 1, 2000 dollars.

3.2 Mean-Variance Portfolio of Benchmark Factors

In Section 2, we showed that the performance of a mutual fund for a shortsale-constrained

investor should be measured using the achievable alpha, defined as the alpha of the mutual

fund with respect to only those factors in the benchmark model that have a strictly positive

weight in the mean-variance portfolio. To see if shortsale constraints are important for

mutual-fund performance, we first compare the weights of the unconstrained and shortsale-

constrained mean-variance portfolios for each of the seven benchmark factor models. If the

unconstrained and shortsale-constrained portfolios are identical, then the traditional and

achievable alphas will coincide.

Figure 2 depicts the weights of the mean-variance portfolio of the factors for each of

the seven models listed in Table 2. Panels A and B of this figure depict the unconstrained

portfolio weights for models based on long-short and long-only factors, respectively. Panel C

9We thank Laurent Barras for providing this data.
10The online appendix of Barras et al. (2022, sec. V.A) explains the filters used to construct this dataset.
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depicts the shortsale-constrained portfolio weights for models based on the long-only factors.

We consider an investor with risk aversion parameter γ = 5 and compute the unconstrained

mean-variance portfolios for our entire sample from January 1975 to December 2019.

Panel A of Figure 2 shows that the unconstrained mean-variance portfolio weights

for the long-short version of the FFC, FF5, FF6, HXZ, and HXZM models do not include

substantially negative weights. In particular, the portfolio weights for the FFC, HXZ, and

HXZM models are all strictly positive, and those for the FF5 and FF6 models include a single

negative weight for the value factor (HML), which is also small in magnitude compared to the

other portfolio weights. In contrast, Panel B shows that the unconstrained mean-variance

portfolios for the long-only version of the factor models contain significant negative weights.

For instance, the portfolio weights for the MKT and SMB factors are negative for the FFC,

FF5, and FF6 models, and those for the MKT and ME factors are negative for the HXZ

and HMXZ models. Panel C depicts the weights of the shortsale-constrained mean-variance

portfolio of the long-only factors. Comparing the unconstrained and shortsale-constrained

portfolios of long-only factors in Panels B and C of Figure 2, we note that the shortsale-

constrained portfolio weights are positive for only a few of the long-only factors for each

model. For instance, we see from Panel C that for FFC and FF6, only the HML and MOM

weights are positive; for FF5, only the HML and RMW weights are positive; and for HXZ

and HXZM, only the weight on ROE is positive.

To understand the difference between the unconstrained mean-variance portfolio

weights of the long-short and long-only factor models, we report in Table 3 the time-series

correlation for the factors of the CAPM, FFC, FF5, FF6, HXZ, and HXZM models de-

scribed in Table 2. Panel A reports the correlation for the long-short factors considered in

the original version of these models, and Panel B for the long-only version of the factors. We

see from Panel A that the long-short factor correlations are generally small, which explains

why the mean-variance investor tends to assign a positive weight to each long-short factor.

In contrast, Panel B shows that the long-only factors tend to be positively correlated to

each other, and thus, the mean-variance investor goes long some factors and short others to

diversify the portfolio risk.11 Note also that the original CAPM and VANG models contain

11Green and Hollifield (1992) explain that the mean-variance portfolio weight is likely to contain substantial
long and short positions if asset returns are driven by a common factor. The long-only factors for each of

15



Table 3: Factor correlations

This table reports time-series correlation for the factors of the CAPM, FFC, FF5, FF6, HXZ, and
HXZM models described in Table 2. Panel A reports the correlation for the long-short factors
considered in the original version of these models, and Panel B for the long-only version of the
factors. In both panels, we also include the market (MKT), which is a long-only factor.

SMB HML CMA RMW UMD ME IA ROE

Panel A: Long-short factor correlations
MKT 0.27 -0.29 -0.36 -0.27 -0.15 0.25 -0.34 -0.24
SMB -0.23 -0.10 -0.48 0.02 0.95 -0.19 -0.40
HML 0.67 0.27 -0.18 -0.07 0.70 -0.00
CMA 0.01 -0.01 -0.03 0.91 -0.09
RMW 0.10 -0.39 0.17 0.68
UMD 0.03 0.00 0.51
ME -0.08 -0.30
IA 0.08

Panel B: Long-only factor correlations
MKT 0.89 0.89 0.94 0.96 0.92 0.88 0.93 0.96
SMB 0.92 0.97 0.94 0.93 1.00 0.97 0.94
HML 0.95 0.93 0.85 0.91 0.94 0.89
CMA 0.95 0.92 0.96 0.99 0.95
RMW 0.93 0.93 0.95 0.98
UMD 0.92 0.92 0.96
ME 0.97 0.94
IA 0.96

just long-only factors, so the portfolio weights for these models are identical in Panels A and

B of Figure 2.

As mentioned above, the CAPM and VANG models are originally composed of

long-only factors. Comparing the unconstrained (Panel A or B) and shortsale-constrained

(Panel C) mean-variance portfolio weights of the CAPM and VANG models in Figure 2, we

observe that, as one would expect, the CAPM model is unaffected by shortsale constraints

because the investor optimally assigns a strictly positive weight to the MKT factor even in

the absence of shortsale constraints. However, the mean-variance portfolio of the VANG

factor model changes dramatically with the presence of shortsale constraints. While in the

absence of shortsale constraints (Panels A or B), the VANG portfolio contains substantial

negative weights in the VFINX and VEXMX funds and positive weights on five separate

funds, in the presence of shortsale constraints (Panel C), it contains a single positive weight

the six models are all likely to be exposed to the market factor, and thus, it is not surprising that the
unconstrained mean-variance portfolio of the long-only benchmark factors includes substantial negative and
positive weights.
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Figure 3: Mean-variance utility of factor models

This figure depicts the mean-variance utility of the different factor models for two cases: (i) long-
short factors without shortsale constraints and (ii) long-only factors with shortsale constraints.
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on the VBINX fund. This is because, being long-only portfolio returns, the VANG factors

are highly correlated to each other.

Figure 3 depicts the mean-variance utility of the different factor models for the follow-

ing two cases: (1) long-short factors without shortsale constraints and (2) long-only factors

with shortsale constraints. The main observation from Figure 3 is that the mean-variance

utility of long-only factor models in the presence of shortsale constraints (blue bars) is less

than half that of long-short models in the absence of shortsale constraints (red bars) for every

model except CAPM. A second observation from Figure 3 is that, while the performance of

the CAPM is not affected by short-sale constraints, its performance compares poorly to that

of the other factor models—both in the absence and presence of shortsale constraints—and

so it is a weak benchmark.

3.3 A simple example to illustrate the key intuition

As mentioned in Section 2, intuitively, one would expect the achievable alpha to be larger

than the traditional alpha because the achievable alpha is the abnormal return with respect

to a subset of the factors used to compute the traditional alpha. However, Proposition 3

shows that if the fund is positively exposed to the factors for which the shortsale-constrained
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Table 4: A simple example

This table reports various statistics for Columbia Acorn Fund with respect to a simple benchmark
model with only two factors: the market (MKT) and the long-only version of momentum (UMD).
The first column reports whether the statistics are for the unconstrained portfolio (traditional alpha)
or shortsale-constrained portfolio (achievable alpha). Columns (2)–(5) report the utility and portfolio
weights of the mean-variance portfolio of the two factors and the mutual fund. Columns (6)–(8)
report the alpha and the beta of the mutual fund with respect to the two factors. We consider an
investor with relative risk aversion γ = 5. All quantities are obtained using the returns of the two
factors and the mutual fund for the entire sample from January 1975 to December 2019.

Mean-variance portfolio Regression

Utility wMKT wUMD wmf α βMKT βUMD

(1) (2) (3) (4) (5) (6) (7) (8)

Unconstrained: Traditional 0.0054 −1.15 0.91 0.89 0.0179 0.39 0.56
Shortsale-constrained: Achievable 0.0045 0 0.33 0.53 0.0121 — 0.86

mean-variance portfolio assigns a zero weight, then the achievable alpha will actually be

smaller than the traditional alpha.

To explain the intuition for this result, we consider a simple example with only two

factors: the market (MKT) and the long-only version of momentum (UMD). Table 4 reports

various statistics for Columbia Acorn Fund with respect to this simple benchmark model

with only these two factors. The first column reports whether the statistics are for the

unconstrained portfolio (traditional alpha) or the shortsale-constrained portfolio (achievable

alpha). Columns (2)–(5) report the utility and portfolio weights of the mean-variance port-

folio of the two factors and the mutual fund. Columns (6)–(8) report the alpha and betas

of the mutual fund with respect to the two factors. We consider an investor with relative

risk aversion γ = 5. All quantities are obtained using the returns of the two factors and the

mutual fund for the entire sample from January 1975 to December 2019.

Consistent with the results in Figure 2, Table 4 shows that the unconstrained mean-

variance portfolio of these two factors assigns a weight of −0.80 to MKT and 1.40 to UMD,

but the shortsale-constrained mean-variance portfolio assigns a weight of zero to MKT and

0.79 to UMD. The reason the unconstrained investor finds it optimal to go long the mo-

mentum factor and short the market is because, as discussed in Section 3.2, the correlation

between the MKT and the long-only version of UMD is 92%; moreover, the monthly mean

return of long-only UMD is 1.08%, whereas that of MKT is only 0.71%.
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We then compute the traditional and achievable monthly alphas of Columbia Acorn

Fund with respect to this two-factor model and find that they are 1.79% and 1.21%.12 Thus,

the achievable alpha is substantially smaller than the traditional alpha. This is consistent

with Proposition 3 because Columbia Acorn Fund has positive betas of 0.39 and 0.56 with

respect to the MKT and long-only UMD factors.

To understand why the achievable alpha is smaller than the traditional alpha, we

compare the unconstrained and shortsale-constrained mean-variance portfolio weights of the

two benchmark factors and the mutual fund. We find that an unconstrained investor would

hold −1.15 in MKT, 0.91 in UMD, and 0.89 in the mutual fund. That is, the unconstrained

investor would short the MKT to hedge the risk of the UMD factor and the mutual fund,

achieving an overall mean-variance utility of 0.0054. In contrast, a shortsale-constrained

investor would hold zero in MKT, 0.33 in UMD, and only 0.53 in the mutual fund. That is,

the shortsale-constrained investor is forced to reduce her exposure to the UMD factor and

Columbia Acorn Fund because she cannot use the MKT factor to hedge the overall risk of

her portfolio and, as a result, achieves a smaller mean-variance utility of only 0.0045.

Consistent with the results for the motivating example reported in the sixth column

of Table 4, in Section 3.4, we find empirically that the achievable alpha is, on average, smaller

than the traditional alpha.

3.4 Mutual-Fund Performance

In this section, we discuss mutual-fund performance in terms of alpha and value-added. We

also examine whether shortsale constraints change the rankings of funds.

3.4.1 Achievable alpha

Table 5 reports cross-sectional statistics for the traditional and achievable fund gross alphas

with respect to the seven factor models listed in Table 2. Panel A reports cross-sectional

statistics for the traditional alpha with respect to the long-short factors, obtained by regress-

ing the fund returns on all long-short factor for each model, and Panel B for the achievable

12The returns of the MKT, long-only version of UMD, and Columbia Acorn Fund are available for our
entire sample from January 1975 to December 2019. Thus, all numbers we report are obtained using the
entire sample of data.
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Table 5: Traditional and achievable mutual-fund alphas

This table reports cross-sectional statistics for the traditional and achievable fund gross alphas with
respect to the seven factor models listed in Table 2. Panel A reports cross-sectional statistics for the
traditional alpha with respect to the long-short factors, obtained by regressing the fund returns on all
long-short factor for each model, and Panel B for the achievable alpha with respect to the long-only
factors, obtained by regressing fund returns on just those long-only factors with a strictly positive
weight in the shortsale-constrained mean-variance portfolio (over the sample period for which we
have return data for the fund). We report the average alpha across funds, its t-statistic, the time-
weighted average alpha (where the weight is proportional to the length of the sample period for
which we have return data for the fund), and its t-statistic. We also report percentiles of the cross-
sectional distribution of fund alpha and the percentage of funds with positive alpha and t-statistic
greater than two. Alphas are annualized and reported in percentage. Like Barras et al. (2022), we
winsorize observations that are more than five times the inter-decile range (difference between the
90th and 10th percentiles) away from the median.

CAPM FFC FF5 FF6 HXZ HXZM VANG

Panel A: Traditional alpha with respect to long-short factors
Average alpha 0.61 0.31 0.50 0.42 0.17 0.24 0.58
t-stat 11.68 6.86 8.67 7.95 3.01 4.66 11.99

Time-weighted average alpha 0.87 0.58 0.63 0.55 0.38 0.42 0.98
t-stat 4.28 4.20 4.12 4.11 3.78 3.94 4.30

10th percentile -2.23 -2.10 -2.45 -2.23 -2.71 -2.50 -2.07
50th percentile 0.59 0.31 0.24 0.18 0.06 0.08 0.54
90th percentile 3.33 2.75 3.85 3.37 3.39 3.28 3.25
Percentage of funds with α > 0 62.76 57.37 53.92 54.05 51.21 51.77 62.54
Percentage of funds with t(α) >2 7.89 9.14 12.76 11.12 8.62 9.48 14.91

Panel B: Achievable alpha with respect to long-only factors
Average alpha 0.58 -1.79 -2.05 -2.34 -3.28 -3.29 -1.14
t-stat 11.18 -23.97 -30.61 -32.82 -44.38 -44.47 -16.73

Time-weighted average alpha 0.86 -1.17 -1.44 -1.71 -2.75 -2.75 -0.31
t-stat 4.27 -4.27 -4.32 -4.33 -4.36 -4.36 -3.42

10th percentile -2.24 -5.87 -5.40 -6.12 -7.15 -7.09 -4.57
50th percentile 0.57 -1.17 -1.56 -1.76 -2.67 -2.68 -0.91
90th percentile 3.30 1.78 1.09 0.99 0.26 0.25 2.25
Percentage of funds with α > 0 62.54 30.81 22.32 20.85 11.81 11.72 37.27
Percentage of funds with t(α) > 2 7.76 3.02 1.29 1.29 0.30 0.34 4.44

alpha with respect to the long-only factors, obtained by regressing fund returns on just those

long-only factors with a strictly positive weight in the shortsale-constrained mean-variance

portfolio (over the sample period for which we have return data for the fund). We report

the average alpha across funds, its t-statistic, the time-weighted average alpha (where the

weight is proportional to the length of the sample period for which we have return data for

the fund), and its t-statistic. We also report percentiles of the cross-sectional distribution of
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fund alpha and the percentage of funds with positive alpha and t-statistic greater than two.

Alphas are annualized and reported in percentage. Like Barras et al. (2022), we winsorize

observations that are more than five times the inter-decile range (difference between the 90th

and 10th percentiles) away from the median.

Comparing Panels A and B of Table 5, we find that mutual-fund performance mea-

sured in terms of the achievable alpha (of a shortsale-constrained investor) with respect to

the long-only versions of the factor models is substantially worse than that measured in

terms of traditional alpha with respect to the long-short factor models. For instance, while

the proportion of mutual funds with positive traditional alpha with respect to the long-short

factor models ranges from 51.21% for HXZ to 62.54% for VANG, the proportion of mutual

funds with positive achievable alpha with respect to the long-only models is 11.81% for HXZ

and 37.27% for VANG.13 This finding is robust to evaluating mutual-fund performance in

terms of alpha t-statistic. Comparing the last row in Panels A and B of Table 5, we find

that while the proportion of mutual funds with significant (t(α) > 2) traditional alpha with

respect to the long-short factor models ranges from 8.62% for HXZ to 14.91% for VANG, the

proportion of mutual funds with significant achievable alpha with respect to the long-only

models is 0.30% for HXZ and 4.44% for VANG.

Thus the main takeaway is that considering jointly long-only benchmark factors and

shortsale constraints leads to a substantial deterioration of the performance of the cross-

section of mutual funds. This is because the mean-variance portfolio of the long-only factors

contains substantial negative positions on the factors, unlike that for the long-short factors,

as shown in Panels A and B of Figure 2. The explanation is that the long-only factors are

highly correlated with each other and, thus, an unconstrained mean-variance investor would

optimally short some of the factors to manage the portfolio risk.

13The CAPM is the only benchmark relative to which mutual-fund performance using the traditional
alpha is similar to that using the achievable alpha. However, as shown in Figure 3, the CAPM is a weak
benchmark compared to the other factor models. Observe also that the traditional and achievable alphas
[and value-added] with respect to the CAPM in Panels A and B of Table 5 [and Table 6] are small but not
zero. To understand the reason for this, note that we compute the alpha for each fund separately over the
entire subsample of months for which we have return data for the fund. Although for our entire sample, it
is optimal to long the market as shown in Panels A and B of Figure 2, for the specific subsamples for which
we have data for some of the mutual funds, it is optimal to short the market. Therefore, for those specific
mutual funds, the achievable and traditional alpha are different. This is illustrated in the first subfigure in
Figure 4, which shows that the weight on the MKT for the CAPM model is zero for a very small percentage
of mutual funds (the red bar is around 1%).
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3.4.2 Achievable value-added

Berk and van Binsbergen (2015) explain the importance of measuring mutual-fund perfor-

mance in terms of value-added, which they define as the average of the product between

a fund’s gross abnormal returns and its assets under management. Table 6 reports cross-

sectional statistics for the traditional and achievable fund value-added (in January 2000

million dollars) with respect to the seven factor models listed in Table 2. For each fund,

we compute the traditional value-added as the average of the product of assets under man-

agement and abnormal returns, obtained by regressing the fund returns on all factors in

each model, and the achievable value-added computed using the fund abnormal returns

with respect to only those factors with a strictly positive weight in the shortsale-constrained

mean-variance portfolio. We report the average value-added, its t-statistic, the time-weighted

average value-added (where the weight is proportional to the length of the sample period

for which we have return data for the fund), and its t-statistic. We also report percentiles

of the cross-sectional distribution of value-added and the percentage of funds with positive

average value-added and t-statistic greater than two. Value added is annualized.

Similar to Table 5 for traditional and achievable alphas, Table 6 contains two panels:

Panel A reports the average traditional value-added for the long-short factor models, and

Panel B the average achievable value-added for the long-only factor models. Consistent

with the findings of Berk and van Binsbergen (2015), Panel A of Table 6 shows that the

average traditional value-added in the cross-section of mutual funds is generally negative

when computed with respect to conventional factor models, ranging from just 0.01 million

dollars for the FF5 model to −1.71 million dollars for the CAPM model. We also confirm

the result of Berk and van Binsbergen (2015) that the cross-sectional average value-added

is significantly positive with respect to the VANG model at 0.78 million dollars, with a

t-statistic of 2.36.14

The key takeaway from Table 6 is that the main findings from evaluating mutual-

fund performance in terms of achievable alpha and achievable value-added are similar. For

instance, comparing Panels A and B in Table 6, we find that while the proportion of mu-

14Note that we consider only funds investing in US equities, whereas Berk and van Binsbergen (2015)
consider funds investing in all equities, that is, including international equities. As a result, the value-added
they estimate is slightly larger than our estimate. In table 3 of their internet appendix, they show that the
value-added decreases when considering funds investing in only US equities.
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Table 6: Traditional and achievable mutual-fund value-added

This table reports cross-sectional statistics for the traditional and achievable fund value-added with
respect to the seven factor models listed in Table 2. Panel A reports cross-sectional statistics for the
traditional value-added computed as the average of the product of assets under management and
abnormal returns, obtained by regressing the fund returns on all long-short factors in each model,
and Panel B the achievable value-added computed using the fund abnormal returns with respect to
just those long-only factors with a strictly positive weight in the shortsale-constrained mean-variance
portfolio (over the sample period for which we have return data for the fund). We report the average
value-added, its t-statistic, the time-weighted average value-added (where the weight is proportional
to the length of the sample period for which we have return data for the fund), and its t-statistic.
We also report percentiles of the cross-sectional distribution of value-added and the percentage of
funds with positive average value-added and t-statistic greater than two. Value added is annualized
and expressed in January 2000 million dollars. Like Barras et al. (2022), we winsorize observations
that are more than five times the inter-decile range away from the median.

CAPM FFC FF5 FF6 HXZ HXZM VANG

Panel A: Traditional value-added with respect to long-short factors
Average value-added -1.71 -0.46 0.01 -0.14 -1.57 -1.21 0.78
t-stat -4.85 -1.50 0.02 -0.40 -4.07 -3.44 2.36

Time-weighted average value-added -0.87 0.12 0.20 -0.04 -1.44 -1.00 1.95
t-stat -1.90 0.33 0.42 -0.09 -2.58 -2.14 3.34

10th percentile -13.92 -10.26 -11.93 -10.72 -14.16 -12.73 -8.67
50th percentile -0.81 -0.61 -0.58 -0.62 -0.92 -0.83 -0.30
90th percentile 8.15 7.57 12.17 10.00 8.68 8.43 11.74
% of funds with average value-added > 0 38.37 39.24 41.20 39.66 35.12 35.88 44.58

Panel B: Achievable value-added with respect to long-only factors
Average value-added -1.81 -9.56 -12.30 -12.81 -19.18 -19.11 -8.28
t-stat -5.06 -15.63 -19.45 -20.34 -23.52 -23.52 -18.16

Time-weighted average value-added -0.97 -10.67 -13.91 -14.90 -23.70 -23.64 -7.15
t-stat -2.05 -4.28 -4.33 -4.35 -4.37 -4.37 -4.23

10th percentile -14.09 -32.81 -36.95 -38.01 -51.04 -50.81 -27.62
50th percentile -0.83 -3.81 -5.11 -5.32 -7.73 -7.74 -3.44
90th percentile 8.14 4.08 1.14 1.23 -0.28 -0.31 2.49
% of funds with average value-added > 0 38.13 20.13 14.30 14.22 8.90 8.90 18.38

tual funds with positive traditional value-added with respect to the long-short factor models

ranges from 35.12% for HXZ to 44.58% for VANG, the proportion of mutual funds with

positive achievable value-added with respect to the long-only models is 8.90% for HXZ and

18.38% for VANG. In contrast to the findings in Panel A of Table 6 for traditional alpha,

Panel B shows that the cross-sectional average achievable value-added is significantly nega-

tive with respect to every factor model, including VANG. For instance, the cross-sectional av-

erage achievable value-added ranges from −1.81 million dollars for CAPM to −19.11 million
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dollars for HXZM. For the VANG model, the cross-sectional average achievable value-added

is −8.28 million dollars, with a t-statistic of −18.16.

3.4.3 Rankings

In the previous sections, we have shown that, on average, mutual-fund performance deterio-

rates significantly for a shortsale-constrained investor. In this section, we examine whether

the relative performance of different mutual funds changes with shortsale constraints. To do

this, we compare the rankings of funds in terms of achievable versus traditional alphas and

value-added.

We measure the difference between the traditional and achievable rankings in terms of

their assignment of funds to deciles. Let T = {T1, T2, . . . , TN} and A = {A1, A2, . . . , AN} be

the traditional and achievable mutual-fund rankings in terms of traditional and achievable

alpha (or value-added). We assign mutual funds to deciles based on their rankings in T and

A. The decile for the nth mutual fund in terms of the traditional and achievable rankings

can be computed as:

dT (n) =

⌈
10 · Tn
N

⌉
and dA(n) =

⌈
10 · An

N

⌉
, (6)

where Tn and An are the traditional and achievable rankings of the nth mutual fund, N is

the total number of mutual funds, and ⌈·⌉ is the ceiling function.

To measure the difference between the deciles constructed according to the traditional

and achievable rankings, we count the number of mutual funds that are assigned to different

deciles in rankings T and A.

Diff =
1

N

∑
n∈N

δ(dT (n) ̸= dA(n)), (7)

where δ(·) is an indicator function equal to one if the condition is true and zero otherwise.

The value of “Diff” ranges between zero and one, with zero indicating that every mutual

fund is assigned to the same decile in both rankings and one indicating that every mutual

fund is assigned to a different decile in the two rankings.

Table 7 reports the difference between the rankings of mutual funds based on the

traditional and achievable alpha and value-added, measured using Diff as defined in Equa-

tion (7). Panel A reports the ranking difference in terms of traditional and achievable alphas,
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Table 7: Difference between traditional and achievable rankings

This table reports the difference between the rankings of mutual funds based on the traditional
and achievable alpha and value-added with respect to the long-only version of the seven factor
models listed in Table 2. Panel A reports the ranking difference (“Diff”) in terms of traditional and
achievable alphas, and Panel B in terms of traditional and achievable value-added. For each factor
model, we report the measure Diff defined in Equation (7) in percentage.

CAPM FFC FF5 FF6 HXZ HXZM VANG

Panel A: Difference in rankings based on alpha
Diff (%) 3.19 75.99 82.80 81.29 83.66 83.15 73.02

Panel B: Difference in rankings based on value-added
Diff (%) 1.83 77.22 83.55 82.23 82.82 82.97 78.70

and Panel B in terms of traditional and achievable value-added. Panels A and B show that

fund rankings change decile for more than 70% of the funds across every factor model except

CAPM. This demonstrates that relative mutual-fund performance is very different from the

perspective of a shortsale-constrained investor. This has implications for capital flows, which

have been shown to be driven by relative mutual-fund performance (Sirri and Tufano, 1998).

3.4.4 Discussion: Why is achievable performance worse?

Our results consistently show that the achievable alpha and value-added are smaller than

their traditional counterparts for the long-only version of the factor models. This is a coun-

terintuitive finding because we compute the achievable alphas by dropping those factors with

zero weight from the benchmark in the shortsale-constrained mean-variance portfolio, and

one would expect that dropping factors from the benchmark would lead to higher estimated

abnormal returns. However, Proposition 3 shows that if a fund has positive exposure to

the factors with a zero weight in the shortsale constrained mean-variance portfolio, then the

achievable alpha is smaller than the traditional alpha. In this section, we show that the

benchmark factors often have a zero weight in the mean-variance portfolio and that mutual

funds often have a positive exposure to the factors with zero weight in the mean-variance

portfolio.

Figure 4 depicts several statistics for the regression of fund returns on the returns

of the long-only benchmark factor models. Each panel reports the results for the long-only

version of the seven models in Table 2. For each factor in each panel, we report the proportion

of funds for which the factor has a zero weight in the shortsale-constrained mean-variance
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Figure 4: Statistics from regression of fund returns on long-only factors

This figure depicts several statistics for the regression of fund returns on the returns of the long-only
benchmark factor models. Each panel reports the results for the long-only version of the seven models
in Table 2. For each factor in each panel, we report the proportion of funds for which the factor has
a zero weight in the shortsale-constrained mean-variance portfolio of the benchmark factors for the
sample period for which we have return data for the fund (red bars). We also report the proportion
of funds for which the loading on a factor that the shortsale-constrained mean-variance portfolio
assigns a zero weight is positive (blue bars). The legend for the figure is displayed in the first plot
(for CAPM).
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portfolio of the benchmark factors for the sample period for which we have return data

for the fund (red bars). We also report the proportion of funds for which the loading on a

factor that the shortsale-constrained mean-variance portfolio assigns a zero weight is positive

(blue bars). The red bars show that, except for the CAPM, many factors often have a zero

weight in the mean-variance portfolio. For instance, for FFC, both MKT and SMB have

zero weight in the mean-variance portfolio for more than 50% of the mutual funds. Similarly,

for HXZM, we observe that MKT, ME, IA, and MOM have zero weight for almost 100% of

the funds. For VANG, we also observe that every factor except VBINX has zero weight in

the mean-variance portfolio for more than 50% of the mutual funds. In addition, the blue

bars show that many mutual funds have positive exposure to factors with zero weight in the
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Figure 5: Contribution of each factor to alpha deterioration

This figure depicts the contribution of each factor to the difference between the traditional and
achievable alphas averaged across all funds using Equation (8). Each panel reports the results for
the long-only version of the seven models in Table 2.
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mean-variance portfolio. For instance, for FFC, FF5, and FF6, we observe that conditional

on the MKT and SMB factors having a zero weight in the mean-variance portfolio for the

sample period for which we have data for a fund, more than 70% of the funds have positive

exposure to MKT and SMB.

Figure 5 reports the contribution of the kth factor to the difference between the

traditional and achievable alphas averaged across all N funds. We compute the contribution

of each factor using the following expression based on Equation (5) of Proposition 3:

Contribution of kth factor =

∑N
n=1(−βT ,0,kα0,+,k)∑N
n=1(−βT ,0α0,+)

=

∑N
n=1(−βT ,0,kα0,+,k)∑N

n=1

∑K0

k (−βT ,0,kα0,+,k)
, (8)

where βT ,0 and α0,+ are as defined in Proposition 3 and their kth elements are denoted as

βT ,0,k and α0,+,k. Figure 5 shows that the market and size factors contribute most to the
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difference between the traditional and achievable alphas. The intuition for this is that they

not only often have a zero weight in the mean-variance portfolio and the mutual funds have

a positive beta on them, but also that they have a large negative alpha with respect to the

other factors in the model. In particular, note that the factors with the largest contribution

to the difference in traditional and achievable alpha are the MKT and SMB factors for the

FFC, FF5, and FF6 models, the MKT and ME for the HXZ and HXZM models, and the

VFINX (large-cap blend), VEXMX (mid-cap blend), NAESX (small-cap blend) factors for

the VANG model.

Taken together, Proposition 3 and Figures 4 and 5 explain why achievable alpha and

value-added tend to be smaller than their traditional counterparts in our sample.

4 Economic Interpretation

In this section, we provide economic interpretation for the empirical performance of the

achievable alpha. In Section 4.1, we study whether the difference between the traditional

and achievable alphas is related to macroeconomic conditions, and in Section 4.2, we study

whether past performance (measured by traditional or achievable alpha) predicts mutual-

fund flows.

4.1 Time Series of Traditional and Achievable Alpha

To understand whether the difference between the traditional and achievable alphas is related

to macroeconomic conditions, Figure 6 depicts the time series of the cross-sectional average

traditional and achievable alpha computed on a 36-month rolling window for the seven models

in Table 2. Our choice of a 36-month rolling window is motivated by Morningstar and other

investment platforms often reporting mutual-fund performance over the past three years.

The traditional alpha is computed with respect to all long-short factors for each model and

the achievable alpha with respect to just those long-only factors that have a positive weight

in the mean-variance portfolio. Gray shaded areas represent NBER recession periods.

Figure 6 shows that the difference between the average traditional and achievable

alphas widens during periods of financial turmoil such as the two back-to-back recessions in

1980 and 1981–82, the dot-com bubble of the early 2000’s, and the Great Financial Crisis of
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Figure 6: Time series of traditional and achievable alpha

This figure depicts the time series of the cross-sectional average traditional and achievable alpha
computed on a 36-month rolling window for the seven models in Table 2. The traditional alpha
is computed with respect to all long-short factors for each model and the achievable alpha with
respect to just those long-only factors that have a positive weight in the mean-variance portfolio.
Gray-shaded areas represent NBER recession periods.
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2009. This implies that the difference between traditional and achievable alpha is particularly

significant during periods of financial crises, when shortsale constraints are likely to be more

binding. An implication of this result, is that shortsale-constrained investors should use

achievable alpha to evaluate mutual-fund performance particularly during financial crises.

We now formally estimate the relationship between (i) the difference between the

traditional alpha and the achievable alpha, and (ii) market risk, using the following panel

regression:

∆αmf ,b,t = β · Riskt +Bb +MFmf + εmf ,b,t, (9)

where ∆αmf,b,t is the difference between the traditional and achievable alpha of mutual fund

mf estimated under model b at time t, Riskt is the market volatility estimated from monthly

market returns over the prior 36-month period at time t, Bb represents model fixed effects to
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Table 8: Difference in alphas during periods of financial turmoil

This table reports the slope coefficient for the market-risk variable in (9), along with its standard er-
ror and the regression R-squared. The independent variable is standardized, allowing the coefficients
to be interpreted as the change in the difference between the traditional and achievable alpha (in
basis points) resulting from a one-standard-deviation increase in market volatility. The first seven
columns report the results for pooled regressions for each model, and the eighth column across all
models. Model fixed effects are included only for the pooled regression across all models. Standard
errors are clustered by fund.

CAPM FFC FF5 FF6 HXZ HXZ VANG ALL

Slope (bps) 8.189 5.589 10.011 10.076 11.770 12.875 8.301 9.544
Standard errors (bps) 0.073 0.241 0.245 0.254 0.276 0.266 0.218 0.194
Model FE No No No No No No No Yes
Fund FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared (%) 7.217 1.993 5.146 5.049 8.789 10.449 4.787 5.429

account for systematic differences across benchmark models, MFmf represents mutual fund

fixed effects to capture fund-specific characteristics, and εmf ,b,t is the idiosyncratic error term.

Table 8 reports the slope coefficient for the market-risk variable in (9), along with

its standard error and the regression R-squared. The independent variable is standard-

ized, allowing the coefficients to be interpreted as the change in the difference between the

traditional and achievable alpha (in basis points) resulting from a one-standard-deviation in-

crease in market volatility. The first seven columns report the results for pooled regressions

for each model, and the eighth column across all models. Table 8 shows that the effect of a

one-standard-deviation increase in market volatility on the difference between the traditional

and achievable alphas is significantly positive for every model, ranging between 5.589 basis

points for the FFC model and 12.875 basis points for the HXZM model. This confirms the

observation from Figure 6 that the difference between the traditional and achievable alpha

increases with market volatility, that is, during periods of financial crises.

4.2 Achievable and Traditional Alphas and Fund Flows

We now study whether past performance (measured by either traditional or achievable alpha)

explains future mutual-fund flows. This analysis allows us to test whether investors are using

traditional or achievable alpha (or both) when making mutual-fund investment decisions.

We define the flows for fund mf in month t as the percentage growth of new assets:

Flowmf ,t =
TNAmf ,t − TNAmf ,t−1 × (1 +Rrf ,t +Rmf ,t)

TNAmf ,t−1

, (10)
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where TNAmf ,t are the total net assets under management of mutual fund mf at the end of

month t, Rrf ,t is the risk-free return, and Rmf ,t is the mutual-fund return in excess of the

risk-free rate.

To study the relation between past performance and fund flows, we run the following

panel regression for each benchmark model:

Flowmf ,t = a · αmf ,t−1 + Tt +MFmf + ϵmf ,t, (11)

where αmf ,t−1 is the alpha of fund mf estimated using the returns of the 36 prior months,

Tt are time fixed effects, MFmf are mutual-fund fixed effects, and ϵmf ,t is the error term.15

We run panel regression (11) first considering the traditional and achievable alpha

individually, and then including both jointly as explanatory variables. Panel A of Table 9

reports the results from estimating the panel regression (11) considering the traditional

alpha individually. Consistent with the existing literature, for every model we find that the

traditional alpha is highly significant in explaining mutual-fund flows, with t-statistics above

10. Moreover, we also find that, consistent with Barber, Huang, and Odean (2016) and Berk

and van Binsbergen (2016), the CAPM traditional alpha explains mutual-fund flows at least

as well as any of the other models, with an R-squared value of 2.639%, which is higher than

those of the other models.

Panel B of Table 9 reports the results from estimating the panel regression (11)

considering the achievable alpha individually. As for the traditional alpha, we find that

for every model, achievable alpha is highly significant in explaining mutual-fund flows, with

t-statistics above 10. In addition, we also find that the CAPM achievable alpha explains

mutual-fund flows at least as well as the achievable alphas of the other models, with an

R-squared value of 2.544%, which is higher than those of the other models. Moreover, we

find that the R-squared values in Panel C are higher than those in Panels A and B, which

again confirms that both the traditional and achievable alpha contribute to explain fund

flows.

To study whether achievable alpha contains information about mutual-fund flows

that is independent from that contained in the traditional alpha, Panel C of Table 9 reports

the results from estimating the panel regression (11) considering jointly the traditional and

15We account for time and fund fixed effects by first subtracting the time-series average and then the
cross-sectional average to our flow and alpha variables.
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Table 9: Achievable and Traditional Alphas and Fund Flows

This table reports slope coefficients and their t-statistics for several versions of panel regression (11).
Panel A considers the regression of fund flows on traditional alpha, Panel B the regression of fund
flows on achievable alpha, Panel C the regression of fund flows jointly on traditional and achievable
alphas, and Panel D the regression of fund flows jointly on traditional and achievable alphas and
their interactions with a “Risk” indicator variable that takes a value of one for months in the top
decile of months sorted by realized market volatility in the prior 36 months, and zero otherwise. For
all regressions, we consider time and fund fixed effects, control for lagged values of fund flows up to
12 months, and double-cluster standard errors by time and fund.

CAPM FFC FF5 FF6 HXZ HXZM VANG

Panel A: Traditional alpha
Slope 0.162 0.157 0.141 0.134 0.149 0.150 0.137

[ 29.561] [ 37.011] [ 28.701] [ 28.825] [ 22.838] [ 32.957] [ 27.877]

R2 (%) 2.639 2.476 1.987 1.802 2.214 2.253 1.874

Panel B: Achievable alpha
Slope 0.159 0.148 0.153 0.149 0.155 0.152 0.146

[ 21.728] [ 21.203] [ 21.559] [ 21.435] [ 21.585] [ 21.628] [ 19.980]

R2 (%) 2.544 2.182 2.350 2.233 2.408 2.320 2.117

Panel C: Traditional and achievable alpha
Slope αT 0.137 0.106 0.073 0.071 0.079 0.088 0.064

[ 4.832] [ 14.447] [ 10.607] [ 10.476] [ 9.168] [ 12.674] [ 7.162]
Slope αA 0.026 0.073 0.107 0.108 0.100 0.094 0.098

[ 0.946] [ 9.608] [ 14.471] [ 15.035] [ 12.446] [ 12.781] [ 9.703]

R2 (%) 2.642 2.738 2.673 2.558 2.737 2.754 2.295

Panel D: Traditional and achievable alpha with risk-interaction terms
Slope αT 0.147 0.109 0.077 0.074 0.084 0.094 0.070

[ 4.929] [ 14.782] [ 10.803] [ 10.624] [ 9.504] [ 13.704] [ 7.590]
Slope αA 0.014 0.070 0.103 0.104 0.095 0.089 0.092

[ 0.501] [ 9.081] [ 13.794] [ 14.367] [ 11.847] [ 12.092] [ 8.863]
Slope αT ×Risk -0.144 -0.020 -0.027 -0.023 -0.025 -0.034 -0.026

[ -3.695] [ -2.039] [ -3.733] [ -3.240] [ -3.103] [ -4.812] [ -2.858]
Slope αA×Risk 0.148 0.019 0.027 0.024 0.030 0.034 0.025

[ 3.853] [ 2.129] [ 3.570] [ 3.366] [ 3.773] [ 4.803] [ 2.658]

R2 (%) 2.671 2.749 2.708 2.586 2.780 2.813 2.318

achievable alphas. Our main finding is that both the traditional and achievable alphas

are generally highly significant, with t-statistics exceeding five across models, except for

the CAPM. This finding demonstrates that the traditional and achievable alphas contain

independent information and suggests that at least some investors use achievable alpha to

make investment decisions.

32



To examine whether the relative importance of traditional and achievable alphas to

explain fund flows depends on market conditions, Panel D of Table 9 reports the results from

estimating a panel regression that considers jointly the traditional and achievable alphas and

includes also their interactions with a “Risk” indicator variable that takes a value of one

for months in the top decile of months sorted by realized market volatility in the prior 36

months, and zero otherwise. We find that the sensitivity of fund flows to traditional alpha

generally weakens during periods of elevated market volatility, with the coefficient for the

interaction between the past traditional alpha and the Risk indicator variable being negative

for every model and significant for every model except FFC. In contrast, consistently across

all models, the relation between fund flows and achievable alpha strengthens when market

volatility is high, with the coefficient for the interaction between the past achievable alpha

and the Risk indicator variable being significantly positive for every model except FFC. These

findings suggest that investors find that achievable alpha is a more informative measure of

future performance during periods of financial turmoil, and thus, they allocate more capital

to funds with high achievable alpha during periods of high market volatility.

5 Relaxing the Shortsale Constraints

In the previous sections, we evaluated the achievable alpha for an investor who cannot short

the benchmark factors. While such shortsale constraints represent a realistic scenario for

most retail and institutional investors, such as certain pension funds, we now evaluate the

performance of mutual funds for investors that can engage in a limited amount of shortselling.

Section 5.1 considers the case of an investor who can short only the market factor using, for

instance, an inverse market ETF. Section 5.2 considers the case of an investor who can short

the benchmark factors but faces a leverage constraint.

5.1 Shorting the Market

Since 2006, investors can short the market by buying an inverse ETF. Although inverse

ETFs represent a minuscule fraction of the ETF industry,16 it is informative to evaluate the

performance of mutual funds for an investor who can short the market.

16As of November 2024, the ETF database lists around 72 inverse ETFs with an aggregate AUM of only
around $8.4 billion; see https://etfdb.com/etfdb-category/inverse-equities/.
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Table 10: Fund performance for investors who can short the market

This table reports cross-sectional statistics for the achievable fund alpha and value-added with
respect to the long-only version of the seven factor models listed in Table 2 for investors who can
short the market. For each fund, Panels A and B report the achievable alpha and value-added
with respect to the market plus other benchmark factors with positive weight in the mean-variance
portfolio of an investor who can short only the market. We report the average alpha and value-added
across funds, their t-statistics, the time-weighted average achievable alpha and value-added, where
the weight is proportional to the length of the sample period for which we have return data for
the fund, and their t-statistics. We also report the percentiles of the cross-sectional distributions of
achievable fund alpha and value-added, the percentage of funds with positive achievable alpha and
value-added, and the percentage of funds with achievable alpha and value-added t-statistic greater
than two. Alphas are annualized and reported in percentage. Like Barras et al. (2022), we winsorize
observations that are more than five times the inter-decile range (difference between the 90th and
10th percentiles) away from the median.

CAPM FFC FF5 FF6 HXZ HXZM VANG

Panel A: Achievable alpha with respect to long-only factors
Average alpha 0.61 -0.29 -0.39 -0.63 -1.20 -1.20 -0.58
t-stat 11.68 -5.14 -7.54 -11.00 -16.70 -16.72 -9.02

Time-weighted average alpha 0.87 0.06 -0.08 -0.29 -0.81 -0.81 0.07
t-stat 4.28 1.26 -1.71 -3.55 -4.16 -4.16 1.26

10th percentile -2.23 -3.31 -3.25 -3.93 -5.29 -5.28 -4.00
50th percentile 0.59 0.12 -0.18 -0.22 -0.56 -0.56 -0.23
90th percentile 3.33 2.43 2.22 2.11 2.19 2.19 2.56
Percentage of funds with α >0 62.76 52.18 46.59 44.94 40.41 40.28 46.19
Percentage of funds with t(α) >2 7.89 8.19 4.14 5.69 5.82 5.95 6.16

Panel B: Achievable value-added with respect to long-only factors
Average value-added -1.71 -2.66 -3.83 -3.86 -7.65 -7.63 -5.80
t-stat -4.85 -7.56 -10.31 -10.52 -15.31 -15.30 -14.04

Time-weighted average value-added -0.87 -2.17 -3.82 -3.83 -8.22 -8.21 -4.73
t-stat -1.90 -3.43 -3.97 -3.99 -4.23 -4.23 -4.07

10th percentile -13.92 -16.17 -17.25 -18.20 -27.73 -27.55 -23.09
50th percentile -0.81 -1.14 -1.67 -1.63 -2.78 -2.76 -2.20
90th percentile 8.15 7.22 5.60 6.22 4.62 4.62 5.35
% funds with value-added>0 38.37 35.62 29.92 30.73 26.99 26.99 26.30

It is straightforward to extend Proposition 2 to show that the marginal utility im-

provement for an investor (who can short only the market) when she has access to a mutual

fund in addition to the benchmark factors is measured by the achievable alpha, defined as

the fund’s alpha with respect to the return of the market factor plus the returns of other

benchmark factors with positive weight in the investor’s mean-variance portfolio. Similarly,

the achievable value-added can be computed using the mutual fund’s abnormal returns with

respect to the market and other benchmark factors with positive weight in the investor’s
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portfolio. For the VANG model, we allow the investor to assign a positive or negative weight

to VFINX, which is the Vanguard fund tracking the S&P500 index.

Panels A and B of Table 10 report the achievable alpha and value-added of an investor

with access to long-only benchmark factors and can short only the market. Consistent with

the results in Section 3.4, we find that the achievable alpha and value-added of this investor

are much smaller than the traditional alpha and value-added of an unconstrained investor

who has access to long-short benchmark factors, which we report in Panel A of Tables 5 and 6.

However, we also note that the percentage of funds with positive achievable alpha and value-

added increases substantially when the investor can short the market. For instance, when the

investor cannot short the market, the percentage of mutual funds with positive achievable

alpha with respect to the long-only version of the factor models ranges between 11.72% for

HXZM and 37.27% for VANG. In contrast, when the investor can short the market, we

have that the percentage of mutual funds with positive achievable alpha with respect to

the long-only version of the models ranges between 40.28% for HXZM and 52.18% for FFC.

Similarly, when the investor cannot short the market, the percentage of mutual funds with

positive achievable value-added with respect to the long-only models ranges between 8.90%

for HXZM and 20.13% for FFC. In contrast, when the investor can short the market, the

percentage of mutual funds with positive achievable value-added with respect to the long-

only models ranges between 26.99% for HXZM and 35.62% for FFC. An implication of the

results in Table 10 is that even though inverse ETFs represent only a small fraction of the

ETF market, they have the potential to substantially improve the mean-variance efficiency

gains offered by active mutual funds to shortsale-constrained investors.

Table 11 reports the difference between the rankings of mutual funds based on the

traditional and achievable alpha and value-added with respect to the long-only version of

the factor models for investors who can short only the market. The table shows that while

the ability of investors to short the market can help them to benefit from investing in active

mutual funds, the relative ranking of mutual funds for such investors continues to be very

sensitive to the presence of shortsale constraints on the other benchmark factors. To see

this, note that Table 11 shows that the ranking of more than 60% of the funds changes by

at least one decile for every factor model except CAPM.
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Table 11: Difference in fund rankings for investors who can short the market

This table reports the difference (“Diff”) between the rankings of mutual funds based on the tradi-
tional and achievable alpha and value-added with respect to the long-only version of the seven factor
models listed in Table 2 for investors who can short only the market. Panel A reports the ranking
difference in terms of traditional and achievable alphas, and Panel B in terms of traditional and
achievable value-added. For each factor model, we report the measure Diff defined in Equation (7)
in percentage.

CAPM FFC FF5 FF6 HXZ HXZM VANG

Panel A: Difference in rankings based on alpha
Diff (%) 0.00 68.28 75.00 78.58 82.93 83.75 74.01

Panel B: Difference in rankings based on value-added
Diff (%) 0.00 61.03 71.39 72.31 75.53 76.42 78.45

5.2 Leverage-Constrained Investors

We now consider the case of a mean-variance investor who can short the benchmark factors,

but faces a leverage constraint. Specifically, we consider an investor whose aggregate short

position has to be smaller than a fraction δ of her aggregate long position. The portfolio

selection problem of this investor can be formulated as:

max
wb,wmf

MVU(wb, wmf ) (12)

s.t. wb + ψs − ψℓ = 0, (13)

wmf + νs − νℓ = 0, (14)

e⊤ψs + νs ≤ δ(e⊤ψℓ + νℓ), (15)

ψℓ, ψs, νℓ, νs ≥ 0, (16)

where wb is the vector of benchmark factor weights, wmf is the weight on the mutual fund, ψs

and ψℓ are slack variables that measure the negative and positive positions of the benchmark

portfolio, νs and νℓ are slack variables that measure the negative and positive positions on

the mutual fund, e is the vector of ones, the constraint e⊤ψs + νs ≤ δ(e⊤ψℓ + νℓ) requires

that the aggregate short position of the investor is smaller than a fraction δ of her aggregate

long position, and the investor’s mean-variance utility is

MVU(wb, wmf ) =
[
µ⊤
b µ⊤

mf

] [ wb

wmf

]
− γ

2

[
w⊤

b w⊤
mf

] [ Σb Σb,mf

Σmf ,b Σmf

] [
wb

wmf

]
. (17)
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Figure 7: Achievable alpha for leverage-constrained investors

This figure depicts the cross-sectional average achievable alpha for leverage-constrained investors,
computed using Proposition 4, for different values of the leverage parameter δ.
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For a given wmf , the optimal portfolio of the benchmark factors for the leverage-

constrained investor is given by the following portfolio selection problem:

MVU∗(wmf ) = max
wb

MVU(wb, wmf ) (18)

s.t. w + ψs − ψℓ = 0, (19)

wmf + νs − νℓ = 0, (20)

e⊤ψs + νs ≤ δ(e⊤ψℓ + νℓ), (21)

ψℓ, ψs, νℓ, νs ≥ 0, (22)

where MVU∗(wmf ) is the optimal mean-variance utility as a function of the weight on the

mutual fund wmf .

In the following proposition, we characterize the marginal mean-variance utility im-

provement that a leverage-constrained investor can achieve by investing in the fund in addi-

tion to the benchmark factors.

Proposition 4 Let the leverage-constrained mean-variance portfolio of the benchmark fac-

tors be w∗
b , that is, let w

∗
b be the solution to Problem (18) for wmf = 0. Then, the marginal
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mean-variance utility improvement that a leverage-constrained investor can achieve by in-

vesting in the fund in addition to the benchmark factors is the achievable alpha,

αA = µmf − γΣmf ,bw
∗
b − λ, (23)

where µmf is the mean gross return of the fund, γ is the investor’s relative risk aversion,

Σmf ,b is the covariance between the mutual fund return and the benchmark factor returns,

and λ is the Lagrange multiplier for the constraint wmf + νs − νℓ = 0 for problem (18) at the

maximizer w∗
b for the value of wmf = 0.

Figure 7 depicts, using Proposition 4, for different values of the leverage parameter

δ, the cross-sectional average achievable alpha for leverage-constrained investors. Figure 7

shows that the average achievable alpha of a leverage-constrained investor is substantially

smaller than the traditional alpha of an unconstrained investor. For instance, for the case

with relatively high leverage of δ = 0.4, the average achievable alpha remains negative

for all factor models except CAPM. For the case with δ = 1, for which the investor can

hold aggregate negative positions as large as her aggregate positive position, the average

achievable alpha remains negative for the HXZ and HXZM models but is positive for the

other models.

6 Conclusion

The traditional approach to evaluating mutual-fund performance is to compute the fund’s

alpha with respect to a set of benchmark factors. However, if the benchmark-factor port-

folio includes short positions in some factors, then this alpha is unachievable for shortsale-

constrained investors. We propose a simple approach to evaluate mutual-fund performance

for such investors.

Theoretically, we show that the marginal-utility gain that a shortsale-constrained

investor can achieve when she has access to a mutual fund in addition to the benchmark

factors can be measured by the achievable alpha, which is the fund alpha with respect to

only those benchmark factors that have a strictly positive weight in the shortsale-constrained

mean-variance portfolio. Empirically, we find that mutual-fund performance substantially

deteriorates when assessed using achievable alpha or value added: while 62.54% and 44.58%
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of funds have positive traditional alpha and value-added, only 37.27% and 18.38% have

positive achievable alpha and value-added for a benchmark containing eight Vanguard funds.

Intuitively, dropping some factors should worsen the performance of the benchmark

portfolio, and thus, one would expect the alpha of a mutual fund to be larger with respect to

the restricted benchmark. However, we show theoretically that if a fund has positive exposure

to some of the factors with a zero weight in the shortsale-constrained mean-variance portfolio,

then the achievable alpha can be smaller than the traditional alpha. Empirically we find

that this indeed is the case. We also relate the gap between the traditional and achievable

alphas to macroeconomic conditions and find it widens during periods of financial turmoil.

An important implication of our work is that the value of active fund management

for shortsale-constrained investors is substantially smaller than previously thought. Thus,

retail investment platforms and pension funds that (by mandate or strategy) abstain from

shorting assets should evaluate mutual-fund performance in terms of achievable alpha or

value-added to account for their client’s constraints.
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A Appendix: Proofs of Propositions

In this section, we provide the proof for each proposition in the main text.

A.1 Proof of Proposition 1

Let us define the return of a portfolio that combines the return from the mean-variance

portfolio combination of the benchmark factors and the return of the fund. This is,

Rp,t = w⊤
b Rb,t + wmfRmf ,t, (A1)

where Rb,t is the K-dimensional vector of benchmark excess returns at time t with mean µb

and covariance matrix Σb, wb is the portfolio of benchmark factors, Rmf ,t is the before-fees

mutual-fund excess return at time t, and wmf is the weight on the fund. In addition, and

without loss of generality, the fund return is defined according to a linear factor model as

Rmf ,t = αT + βRb,t + ϵb,t, (A2)

where ϵb,t is a zero-mean random variable with standard deviation σϵ. Therefore, we can

redefine the portfolio return as

Rp,t = (wb + wmf βi︸ ︷︷ ︸
=w̃b

)⊤Rb,t + wmf (αT + ϵb,t). (A3)

Because Rb,t and (αT + ϵb,t) are uncorrelated, we can optimize w̃b and wmf independently.

Accordingly, define the investor’s mean-variance utility as

E
[
w̃⊤

b Rb,t + wmf (αT + ϵb,t)
]
− γ

2
Var

[
w̃⊤

b Rb,t + wmf (αT + ϵb,t)
]
, (A4)

where γ is the investor’s risk aversion parameter. We now provide the derivative of the

investor’s mean-variance utility with respect to wmf :

∂E
[
w̃⊤

b Rb,t + wmf (αT + ϵb,t)
]
− γ

2
Var

[
w̃⊤

b Rb,t + wmf (αT + ϵb,t)
]

∂wmf

= αT − γwmf σ
2
ϵ , (A5)

and evaluating the derivative at wmf = 0 gives αT , which completes the proof. □
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A.2 Proof of Proposition 2

The investor’s mean-variance utility for any portfolio w is

MVU(w) =
[
µ⊤
b+

µ⊤
b0

µ⊤
mf

]
w − γ

2
w⊤

 Σb+ Σb+,b0 Σb+,mf

Σb0,b+ Σb0 Σb0,mf

Σmf ,b+ Σmf ,b0 Σmf

w.
Once the investor has access to the fund, the portfolio w0 = (w∗

b+
, w∗

b0
= 0, wmf = 0)

is no longer mean-variance efficient for her. Assuming the investor is currently holding

the shortsale-constrained mean-variance portfolio of the benchmark factors w0, she would

maximize the marginal improvement to her mean-variance utility by shifting her portfolio in

the direction of the gradient of her mean-variance utility evaluated at w0, that is, by shifting

her portfolio as follows:

w = w0 + δ∇wMVU(w0), (A6)

where δ is infinitesimally small and ∇wMVU(w0) is the gradient of the investor’s mean-

variance utility evaluated at w0. Moreover,

∇wMVU(w) =

 µb+

µb0

µmf

− γ

 Σb+ Σb+,b0 Σb+,mf

Σb0,b+ Σb0 Σb0,mf

Σmf ,b+ Σmf ,b0 Σmf

 wb+

wb0

wmf

 . (A7)

Therefore, the gradient evaluated at w0 is

∇wMVU(w0) =

 µb+

µb0

µmf

− γ

 Σb+ Σb+,b0 Σb+,mf

Σb0,b+ Σb0 Σb0,mf

Σmf ,b+ Σmf ,b0 Σmf

 w∗
b+

0
0

 (A8)

=

 µb+ − γΣb+w
∗
b+

µb0 − γΣb0,b+w
∗
b+

µmf − γΣmf ,b+w
∗
b+

 (A9)

Note that w∗
b = (w∗

b+
, w∗

b0
= 0) is the shortsale-constrained mean-variance portfolio

for the case where the investor does not have access to the fund. Thus, we must have that

µb+ − γΣb+w
∗
b+

= 0, µb0 − γΣb0,b+w
∗
b+

≤ 0, and w∗
b+

= 1
γ
Σ−1

b+
µb+ . Consequently

∇wMVU(w0) =

 0
µb0 − γΣb0,b+w

∗
b+

≤ 0

µmf − Σmf ,b+Σ
−1
b+
µb+

 . (A10)
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Furthermore, note that αA = µmf − Σmf ,b+Σ
−1
b+
µb+ is the alpha of the fund with respect to

the b+ benchmark factors, which have a strictly positive weight in the shortsale-constrained

mean-variance portfolio. Therefore, for an investor with relative risk aversion γ, we have

that

∇wMVU(w0) =

 0
µb0 − γΣb0,b+w

∗
b+

≤ 0

αA

 . (A11)

Note that the gradient of the investor’s mean-variance utility with respect to wb+ is zero,

which means she has no incentive to change her weight on the b+ factors, the gradient of her

mean-variance utility with respect to the b0 factors is negative, which implies (because of

shortsale constraints) that she cannot reduce the weight on the b0 factors, and the gradient

of her mean-variance utility with respect to the weight on the fund is equal to the fund

alpha αA. This shows that, to maximize the marginal improvement to her mean-variance

utility, the investor should increase her weight on the fund while keeping the weights on

the benchmark factors fixed at w∗
b = (w∗

b+
, w∗

b0
= 0), and the marginal improvement to her

mean-variance utility per dollar invested in the fund would be αA. □

A.3 Proof of Proposition 3

First, without loss of generality, we define the factors that the shortsale-constrained mean-

variance portfolio assigns a weight of zero as in Equation (4). Second, we define the short-

sale-constrained mean-variance portfolio of all the K benchmark factors as

wb = Σ−1
b [µb + ηb], (A12)

where ηb ≥ 0 ∈ RK is the vector of Lagrange multipliers associated with the non-negativity

constraints. The partition covariance matrix Σb is

Σb =

[
Σb+ Σb+,b0

Σ⊤
b+,b0

Σb0

]
, (A13)

where Σb+ ∈ RK+×K+ is the covariance matrix for the factors Rb+,t for which the shortsale-

constrained mean-variance portfolio assigns a positive weight, Σb0 ∈ RK0×K0 is the covariance

matrix for the factors Rb0,t for which the shortsale-constrained mean-variance portfolio as-

signs a zero weight, and Σb+,b0 ∈ RK+×K0 is the covariance matrix between the Rb+,t and
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Rb0,t factors. The partitioned vector of means is

µb =

[
µb+

µb0

]
, (A14)

where µb+ ∈ RK+ is the vector of mean returns for the factors Rb+,t for which the shortsale-

constrained mean-variance portfolio assigns a positive weight and µb0 ∈ RK0 is the vector of

mean returns for the factors Rb0,t for which the shortsale-constrained mean-variance portfolio

assigns a zero weight. Using the definition for the partitioned inverse covariance matrix

Σ−1
b =

[
Σ−1

b+
+ Σ−1

b+
Σb+,b0S

−1Σ⊤
b+,b0

Σ−1
b+

−Σ−1
b+
Σb+,b0S

−1

−S−1Σ⊤
b+,b0

Σ−1
b+

S−1

]
, (A15)

where S = Σb0 − Σ⊤
b+,b0

Σ−1
b+
Σb+,b0 , we can obtain the closed-form expression for the weights

assigned to the factors Rb0,t. This is

wb0 = S−1
[
µ0 − Σ⊤

b+,b0
Σ−1

b+
µ+︸ ︷︷ ︸

α0,+

−Σ⊤
b+,b0

Σ−1
b+
η+ + η0︸ ︷︷ ︸

η0

]
. (A16)

The first underbrace bracket comes from the fact that Σ⊤
b+,b0

Σ−1
b+

= ϕ in Equation (4), and the

second underbrace bracket comes from the fact that η+ = 0, which is the vector of Lagrange

multipliers associated to the factors with a positive weight. Thus, we have that

wb0 = S−1[α0,+ + η0] = 0, (A17)

because wb0 is the vector of weights for which the shortsale-constrained mean-variance port-

folio finds optimal to assign a zero weight. Pre-multiplying wb0 with S, we have that

[α0,+ + η0] = 0, (A18)

which implies that α0,+ = −η0. Because η0 > 0 is the vector of Lagrange multipliers asso-

ciated with the non-negativity constraints of the factors for which the shortsale-constrained

mean-variance portfolio assigns a zero weight, we have that the vector of intercepts in Equa-

tion (4) are all negative.

In the second part of the proof, we show the mechanism behind the alpha decay

experienced when we replace the benchmark model without shortsale constraints with a

more parsimonious factor model that drops the factor for which the shortsale-constrained
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mean-variance portfolio assigns a zero weight. To do that, we plug in the equation for the

traditional alpha, the expression for the factors Rb0,t in Equation (4). This yields:

αT = Rmf ,t − βT ,+Rb+,t − βT ,0

(
α0,+ + β0,+Rb+,t + ϵ0,+,t

)
− ϵb,t. (A19)

Rearranging terms, we have

αT = Rmf ,t −
β̃A︷ ︸︸ ︷

(βT ,+ + βT ,0β0,+)Rb+,t︸ ︷︷ ︸
αA+ϵ̃b,t

−βT ,0α0,+ − βT ,0ϵ0,+,t − ϵb,t, (A20)

Taking expectations, we obtain

αT − αA = −βT ,0α0,+. (A21)

□

A.4 Proof of Proposition 4

By the envelope theorem (Mas-Colell, Whinston, and Green, 1995, p. 965) we have that

dMVU∗(wmf )

dwmf

=
∂MVU(wb, wmf )

∂wmf

∣∣∣∣
wb(wmf )

− λ,

where wb(wmf ) is the optimal leverage-constrained mean-variance portfolio of the benchmark

factors for a given weight on the mutual fund factor wmf , and λ is the Lagrange multiplier

for the constraint wmf + νs − νℓ = 0 for the problem in (18) at the maximizer wb(wmf ).

Moreover,

dMVU∗(wmf )

dwmf

∣∣∣∣
wmf =0

=
∂MVU(wb, wmf )

∂wmf

∣∣∣∣
w∗

b ,wmf =0

− λ = µmf − γΣmf ,bw
∗
b − λ,

where the second equality follows by taking the partial derivative of the right-hand side of

Equation (17) with respect to wmf . □
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Internet Appendix to

Rethinking Mutual Fund Performance:

From Traditional Alpha to Achievable Alpha



This Internet Appendix reports the following robustness checks and additional results: (i) eval-

uating achievable skill and scale and (ii) studying the explanation for the decay of achievable

alpha.

IA.1 Scale and Scalability

In the main body of the manuscript, we study two traditional performance measures—alpha

and value-added—that are commonly used to evaluate fund performance. However, it is also

informative to analyze the underlying skill of a fund and the scalability of its investment

strategy. Barras et al. (2022) define a fund’s alpha as a function of its skill and scalability.

Specifically, they define a fund’s gross alpha as

αmf = amf − bmf × TNAmf , (IA1)

where amf and bmf are the skill and scale parameters for fund mf , and TNAmf is the average

total net assets (in year 2000 dollars) of fund mf . While a larger amf indicates higher skill,

a larger bmf implies lower scalability.

We now examine the skill and scalability parameters amf and bmf for both the tra-

ditional and the achievable alphas. Table IA.1 reports cross-sectional statistics for these

parameters. Panel A shows that the average skill decreases when computed using the tra-

ditional alpha. We also observe that although the percentage of funds with positive skill

remains above 50% in all models, it is lower than the percentage derived from the traditional

alpha. Panel B shows that the scale parameter b increases substantially when estimated

from the achievable alpha. This increase in b suggests that the trading strategies of active

mutual funds are less scalable, and that their returns decline more steeply as their scale

grows. Overall, these findings indicate that accounting for shortsale constraints leads to a

deterioration in both skill and scalability.

IA.2 Time-varying risk

In the main body of the manuscript, we follow Berk and van Binsbergen (2015) and compute

fund alphas using each fund’s entire return history. However, funds are expected to adjust

their risk exposure over time. To account for this time variation, we estimate fund alphas

using 36-month rolling windows. To compute a fund’s alpha, we require a minimum of 30
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Table IA.1: Achievable skill and scalability

This table reports cross-sectional statistics for the traditional and achievable scale and scalability
parameters that define fund alpha in (IA1), with respect to the seven factor models listed in Table 2.
For each fund, we compute the traditional alpha by regressing the fund returns on all factors for
each model and the achievable alpha on only those factors with a strictly positive weight in the
shortsale-constrained mean-variance portfolio over the sample period for which we have return data
for the fund. We report the average scale and scalability parameters across funds, their t-statistic
(the time-weighted average scale and scalability parameters), where the weight is proportional to
the length of the sample period for which we have return data for the fund, and their t-statistic. We
also report percentiles of the cross-sectional distribution of fund scale and scalability parameters and
the percentage of funds with positive scale and scalability parameters and t-statistic greater than
two. Scale and scalability parameters are annualized and reported in percentage. Like Barras et al.
(2022), we winsorize observations that are more than five times the inter-decile range (difference
between the 90th and 10th percentiles) away from the median.

CAPM FFC FF5 FF6 HXZ HXZM VANG

Panel A: Skill
Panel A.1: Skill from traditional alpha
Average 4.37 2.60 2.73 2.56 2.91 2.74 2.79
T-stat 27.91 22.69 21.81 21.47 21.94 21.68 21.67

10th percentile -2.39 -2.62 -2.69 -2.77 -3.01 -2.93 -3.20
50th percentile 3.29 2.19 2.02 1.95 2.17 2.10 2.40
90th percentile 11.96 8.58 9.37 8.89 9.90 9.28 9.23

Percentage funds a >0 80.80 75.17 70.47 70.52 71.24 70.69 75.42

Panel A.2: Skill from achievable alpha
Average 4.33 2.38 2.42 1.51 1.27 1.23 2.92
T-stat 27.12 15.83 14.36 10.14 7.96 7.83 16.59

10th percentile -2.44 -4.71 -4.77 -5.41 -5.80 -5.82 -4.47
50th percentile 3.28 1.97 1.54 1.14 0.56 0.56 2.17
90th percentile 11.90 9.66 10.18 8.44 8.43 8.36 11.10

Percentage funds a >0 80.66 67.76 64.53 61.06 56.83 56.92 67.60

Panel B: Scale
Panel B.1: Scale from traditional alpha
Average 28.84 19.05 18.85 17.83 20.92 19.27 16.72
T-stat 15.75 13.86 13.21 13.44 14.54 13.91 12.01

10th percentile -8.25 -10.53 -12.84 -12.96 -10.36 -11.64 -13.46
50th percentile 6.43 4.03 3.41 3.31 4.25 3.96 3.95
90th percentile 102.05 72.14 75.17 70.24 77.57 72.93 68.76

Percentage funds b >0 80.90 75.48 72.87 73.15 75.39 74.83 75.57

Panel B.2: Scale from achievable alpha
Average 29.40 36.21 36.27 30.57 37.74 37.52 34.12
T-stat 15.75 16.21 16.02 14.68 17.28 16.97 14.61

10th percentile -8.81 -10.86 -11.62 -13.26 -7.20 -7.25 -11.46
50th percentile 6.38 7.34 6.49 5.97 8.00 7.86 6.02
90th percentile 103.09 126.69 122.98 111.26 128.08 127.70 122.20

Percentage funds b >0 80.71 76.69 77.84 76.05 78.90 78.66 78.71



Figure IA.1: Cross-sectional average of fund market betas

This figure depicts the cross-sectional average of fund market betas.
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months within the estimation window. Then, for each fund mf , we compute the average

alpha ᾱmf using all estimated alphas from all the corresponding windows. We report cross-

sectional statistics of funds’ average alphas under both the traditional approach and the

achievable approach, where we retain only those benchmark factors in the time-series regres-

sion for which the shortsale-constrained mean-variance portfolio assigns a positive weight.

Figure IA.1 confirms that fund exposure to systematic risk fluctuates significantly over

time. Between 1985 and 2005, the average fund exhibited a market beta below one. However,

in the lead-up to the Financial Crisis, the average market beta rose from approximately 0.95

in 2003 to 1.17 in 2007, before steadily declining to around 1.0 in the following years.

Table IA.2 presents cross-sectional statistics of funds’ average alphas for the seven

factor models listed in Table 2. The results are consistent with those in Table 5 from the

main body of the manuscript. Across all factor models, the average achievable alpha is

significantly lower than that obtained under the traditional approach. Accounting for time-

varying fund exposure to benchmark factors through rolling windows further reduces the

achievable alpha, even for the CAPM model. This finding is particularly relevant given that

financial services firms, such as Morningstar, typically report alphas based on short windows

of 36 or 72 months rather than using a fund’s entire return history. In shorter windows,

periods of market underperformance may lead to optimal strategies that involve shorting

the market, which explains why the achievable alpha for CAPM in this setting is much

smaller than the traditional alpha.
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Table IA.2: Traditional and achievable mutual-fund alphas using rolling windows

This table reports cross-sectional statistics for the traditional and achievable average alphas with
respect to the seven factor models listed in Table 2. We compute funds’ average alphas using 36-
month rolling windows to estimate a fund’s alpha. To compute a fund’s alpha, we require a minimum
of 30 months within the estimation window. Then, for each fund mf , we compute the average alpha
ᾱmf using all estimated alphas from all the corresponding windows. We compute the traditional
alpha by regressing the fund returns on all factors for each model and the achievable alpha on only
those factors with a strictly positive weight in the shortsale-constrained mean-variance portfolio. We
report the average alpha across funds, its t-statistic, percentiles of the cross-sectional distribution
of fund alpha and the percentage of funds with positive alpha. Alphas are annualized and reported
in percentage.

CAPM FFC FF5 FF6 HXZ HXZM VANG

Panel A: Traditinal alpha with respect to long-short factors
Average alpha 0.52 0.09 0.55 0.49 0.30 0.46 0.12
t-stat 9.46 2.03 9.91 9.11 5.88 9.39 2.40

10th percentile -2.20 -2.10 -1.99 -1.93 -2.12 -1.82 -2.29
50th percentile 0.50 0.11 0.27 0.26 0.23 0.38 0.12
90th percentile 3.26 2.43 3.54 3.29 2.91 3.01 2.66

Percentage of funds with α >0 61.18 52.87 55.92 55.84 55.54 59.07 53.21

Panel B: Achievable alpha with respect to long-only factors
Average alpha 0.21 -3.22 -3.38 -3.64 -3.24 -3.36 -3.34
t-stat 3.87 -40.51 -44.95 -46.54 -41.71 -42.48 -45.26

10th percentile -2.36 -7.61 -7.39 -7.92 -7.43 -7.76 -7.20
50th percentile 0.24 -2.41 -2.73 -2.88 -2.48 -2.56 -2.89
90th percentile 2.71 0.34 0.02 -0.14 0.33 0.27 0.07

Percentage of funds with α >0 56.83 12.58 10.08 9.22 12.58 12.45 10.64

IA.3 Replicating factors with mutual funds

One challenge faced by shortsale-constrained investors is gaining exposure to traditional

academic factors, such as HML, which rely on taking short positions. As highlighted by

Johansson et al. (2025), the substantial leverage required by academic factors presents a

significant obstacle when attempting to replicate their factor returns through ETFs and

mutual funds. To address this issue, we explore alternative factor model constructions in

which benchmark factor models consist of (i) long-only versions of academic factors and

(ii) equal-weighted portfolios of funds that exhibit significantly negative exposures to these

factors. Specifically, for each long-short academic factor, we form an equal-weighted portfolio

of funds with statistically significant negative exposures—defined as having a t-statistic less

than−2—on the given factor. For example, in the context of the FFC model, we approximate
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Table IA.3: Time-series properties and Sharpe ratio of replicated factors

This table reports the time-series correlation between the replicated factor and the original factor,
the annualized Sharpe ratio of the replicated factor, and the annualized Sharpe ratio of the original
factor.

SMB HML CMA RMW UMD ME IA ROE

Correlation with original factor 0.35 -0.41 -0.36 -0.35 -0.22 0.19 -0.56 -0.26
Sharpe ratio replicated factor 0.64 0.58 0.62 0.60 0.64 0.32 0.53 0.64
Sharpe ratio original factor 0.60 0.45 0.47 0.38 0.27 0.55 0.42 0.34

a fund-based HML factor by aggregating the returns of funds whose estimated loading on

the traditional long-short HML factor is both negative and statistically significant.

Table IA.3 reports the time-series correlation between the replicated factors and the

original long-short factors, along with the annualized Sharpe ratio of the replicated and

original factors. With the exception of the size factors SMB and ME, our replicated factors

successfully achieve the intended negative exposures. However, the correlations between the

replicated and original factors are generally low, which is consistent with the findings of

Johansson et al. (2025), who highlight the difficulty of replicating academic factor returns

using only tradeable funds.

We now evaluate mutual fund performance using augmented factor models that incor-

porate both the long-only versions of academic factors and the replicated factors. Table IA.4

reports cross-sectional statistics for both traditional and achievable fund gross alphas, based

on the five factor models described in Table 2 that rely on long-short factors. Consistent

with the analysis in the main body of the manuscript, average achievable alphas are substan-

tially lower than average traditional alphas across all models. Furthermore, the proportion

of funds generating a positive achievable alpha ranges from 11.29% for HXZM to 26.80% for

FFC—considerably lower than the fraction of funds with a positive traditional alpha, which

ranges from 46.40% for HXZ to 48.58% for FF5.

IA.4 Traditional and Achievable Alpha Correlation

Figure IA.2 depicts the time series of the cross-sectional correlation between traditional

and achievable fund alpha across the seven factor models listed in Table 2. We find that

these correlations fluctuate considerably over time for most models. The CAPM consistently

exhibits the highest correlation, although this relationship weakened notably during major

market disruptions such as the dot-com bubble of the early 2000s and the great financial
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Table IA.4: Mutual-fund alphas with replicated factors

This table reports cross-sectional statistics for the traditional and achievable fund gross alphas using
augmented factor models that incorporate both the long-only versions of academic factors and the
replicated factors for the five factor models listed in Table 2 that require long-short factors. Panel A
reports cross-sectional statistics for the traditional alpha, and Panel B for the achievable alpha,
obtained by regressing fund returns on just those replicated factors with a strictly positive weight in
the shortsale-constrained mean-variance portfolio (over the sample period for which we have return
data for the fund). We report the average alpha across funds, its t-statistic, the time-weighted
average alpha (where the weight is proportional to the length of the sample period for which we
have return data for the fund), and its t-statistic. We also report percentiles of the cross-sectional
distribution of fund alpha and the percentage of funds with positive alpha and t-statistic greater
than two. Alphas are annualized and reported in percentage. Like Barras et al. (2022), we winsorize
observations that are more than five times the inter-decile range (difference between the 90th and
10th percentiles) away from the median.

FFC FF5 FF6 HXZ HXZM

Panel A: Fund-based factors without short-sale constraints
Average alpha -0.12 -0.15 -0.15 -0.17 -0.16
t-stat -2.54 -3.23 -3.18 -3.25 -3.18

Time-weighted average alpha 0.06 0.06 0.03 -0.05 -0.02
t-stat 1.38 1.38 0.71 -1.06 -0.37

10th percentile -2.64 -2.62 -2.65 -2.98 -2.87
50th percentile -0.07 -0.05 -0.10 -0.15 -0.15
90th percentile 2.36 2.24 2.34 2.56 2.52
Percentage of funds with α >0 48.19 48.58 47.91 46.40 46.45
Percentage of funds with t(α) >2 9.27 8.19 9.00 9.05 9.22

Panel B: Fund-based factors with short-sale constraints
Average alpha -2.04 -2.13 -2.40 -3.30 -3.32
t-stat -27.66 -31.91 -33.81 -44.82 -45.03

Time-weighted average alpha -1.40 -1.49 -1.75 -2.76 -2.77
t-stat -4.31 -4.33 -4.34 -4.36 -4.36

10th percentile -6.05 -5.43 -6.12 -7.13 -7.15
50th percentile -1.48 -1.62 -1.81 -2.69 -2.70
90th percentile 1.43 0.95 0.88 0.20 0.20
Percentage of funds with α >0 26.80 20.98 19.43 11.42 11.29
Percentage of funds with t(α) >2 1.98 1.38 1.42 0.34 0.47

crisis of 2009. The time-series average cross-sectional correlations for the CAPM, FFC,

FF5, FF6, HXZ, HXZM, and VANG models are 99.41%, 76.29%, 67.56%, 65.57%, 72.47%,

70.90%, and 85.90%, respectively.

Figure IA.3 depicts the cross-sectional correlation between traditional CAPM alpha

and the traditional fund alpha for the six non-CAPM models listed in Table 2, and Fig-

ure IA.4 depicts the cross-sectional correlation between traditional CAPM alpha and the

Page 7 of Internet Appendix



Figure IA.2: Cross-sectional correlation between traditional and achievable alpha

This figure depicts the cross-sectional correlation between traditional and achievable fund alpha for
all the seven models listed in Table 2.
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achievable fund alpha for the six non-CAPM models listed in Table 2. We observe that in

general, the traditional CAPM alpha is much more correlated wiht the non-CAPM achiev-

able alphas. In particular, the average correlation between traditional CAPM alpha and

non-CAPM traditional alphas across all models is 73.32%, whereas the average correlation

between traditional CAPM alpha and non-CAPM achievable alphas across all models is

94.60%.
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Figure IA.3: Correlation between traditional CAPM and non-CAPM alphas

This figure depicts the cross-sectional correlation between traditional CAPM alpha and the tradi-
tional fund alpha for the six non-CAPM models listed in Table 2.
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IA.5 Fund Flows: Controlling for CAPM alpha

In this Section, we repeat the analysis in Table 9 in the main body of the manuscript,

controlling for traditional CAPM alpha for the pooled regressions in Panels C and D. We

see in Table IA.5 that our results are robust to controlling for traditional CAPM alpha. One

element to note from this analysis is that the significance of the coefficients for the achievable

alphas in Panels C and D decreases substantially relative to that for the coefficients in

Panels C and D in Table 9 where we do not control for traditional CAPM alpha. This is

because, as we have seen in Figure IA.4, the correlation between traditional CAPM alpha

and non-CAPM achievable alphas is large.
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Figure IA.4: Traditional CAPM alpha and achievable non-CAPM alphas

This figure depicts the cross-sectional correlation between traditional CAPM alpha and the achiev-
able fund alpha for the six non-CAPM models listed in Table 2.
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Table IA.5: Achievable and Traditional Alphas and Fund Flows

This table reports slope coefficients and their t-statistics for several versions of panel regression (11).
Panel A considers the regression of fund flows on traditional alpha, Panel B the regression of fund
flows on achievable alpha, Panel C the regression of fund flows jointly on traditional and achievable
alphas, and Panel D the regression of fund flows jointly on traditional and achievable alphas and
their interactions with a “Risk” indicator variable that takes a value of one for months in the top
decile of months sorted by realized market volatility in the prior 36 months, and zero otherwise. For
all regressions, we consider time and fund fixed effects, control for lagged values of fund flows up to
12 months, and double-cluster standard errors by time and fund. Finally, the regressions in Panels C
and D include the traditional CAPM-alpha as a control in all models except for the CAPM.

CAPM FFC FF5 FF6 HXZ HXZM VANG

Panel A: Traditional alpha
Slope 0.162 0.083 0.054 0.049 0.066 0.071 0.031

[ 29.561] [ 18.946] [ 11.891] [ 11.018] [ 8.363] [ 14.457] [ 5.128]

R2 (%) 2.639 2.956 2.790 2.778 2.851 2.893 2.678

Panel B: Achievable alpha
Slope 0.159 0.148 0.153 0.149 0.155 0.152 0.146

[ 21.728] [ 21.203] [ 21.559] [ 21.435] [ 21.585] [ 21.628] [ 19.980]

R2 (%) 2.544 2.182 2.350 2.233 2.408 2.320 2.117

Panel C: Traditional and achievable alpha
Slope αT 0.137 0.084 0.054 0.049 0.061 0.068 0.032

[ 4.832] [ 12.343] [ 8.472] [ 7.807] [ 6.994] [ 10.268] [ 3.763]
Slope αA 0.026 -0.007 0.035 0.021 0.039 0.032 -0.007

[ 0.946] [ -0.514] [ 2.345] [ 1.588] [ 2.958] [ 2.492] [ -0.444]

R2 (%) 2.642 2.957 2.813 2.788 2.885 2.918 2.679

Panel D: Traditional and achievable alpha with risk-interaction terms
Slope αT 0.147 0.086 0.058 0.052 0.066 0.074 0.038

[ 4.929] [ 12.675] [ 8.754] [ 7.977] [ 7.422] [ 11.446] [ 4.227]
Slope αA 0.014 -0.008 0.033 0.021 0.035 0.029 -0.012

[ 0.501] [ -0.577] [ 2.233] [ 1.539] [ 2.649] [ 2.265] [ -0.712]
Slope αT ×Risk -0.144 -0.014 -0.024 -0.017 -0.024 -0.031 -0.022

[ -3.695] [ -1.342] [ -3.136] [ -2.259] [ -2.724] [ -3.973] [ -2.057]
Slope αA×Risk 0.148 0.012 0.024 0.018 0.028 0.031 0.022

[ 3.853] [ 1.359] [ 3.058] [ 2.502] [ 3.264] [ 4.044] [ 2.328]

R2 (%) 2.671 2.962 2.841 2.804 2.923 2.967 2.697
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